--- title: MLRC-BENCH emoji: 📊 colorFrom: green colorTo: blue sdk: streamlit sdk_version: 1.39.0 app_file: app.py pinned: false license: cc-by-4.0 --- ## Overview This application provides a visual leaderboard for comparing AI model performance on challenging Machine Learning Research Competition problems. It uses Streamlit to create an interactive web interface with filtering options, allowing users to select specific models and tasks for comparison. The leaderboard uses the MLRC-BENCH benchmark, which measures what percentage of the top human-to-baseline performance gap an agent can close. Success is defined as achieving at least 5% of the margin by which the top human solution surpasses the baseline. ## Installation & Setup 1. Clone the repository ```bash git clone https://huggingface.co/spaces/launch/MLRC_Bench cd MLRC_Bench ``` 2. Setup virtual env and install the required dependencies ```bash python -m venv env source env/bin/activate pip install -r requirements.txt ``` 3. Run the application ```bash streamlit run app.py ``` ### Updating Metrics To update the table, update the respective metric file in `src/data/metrics` directory ### Updating Text To update the tab on Benchmark details, make changes to the the following file - `src/components/tasks.py` To update the metric definitions, make changes to the following file - `src/components/tasks.py` ### Adding New Metrics To add a new metric: 1. Create a new JSON data file in the `src/data/metrics/` directory (e.g., `src/data/metrics/new_metric.json`) 2. Update `metrics_config` in `src/utils/config.py`: ```python metrics_config = { "Margin to Human": { ... }, "New Metric Name": { "file": "src/data/metrics/new_metric.json", "description": "Description of the new metric", "min_value": 0, "max_value": 100, "color_map": "viridis" } } ``` 3. Ensure your metric JSON file follows the same format as existing metrics: ```json { "task-name": { "model-name-1": value, "model-name-2": value }, "another-task": { "model-name-1": value, "model-name-2": value } } ``` ### Adding New Agent Types To add new agent types: 1. Update `model_categories` in `src/utils/config.py`: ```python model_categories = { "Existing Model": "Category", "New Model Name": "New Category" } ``` ## License [MIT License](LICENSE)