Spaces:
Running
Running
latest code from main
Browse files- configs/auto_merging.yaml +2 -2
- configs/basic.yaml +1 -1
- configs/sentence_window.yaml +1 -1
- scripts/app.py +1 -1
- spaces/welcome_message.md +1 -1
- src/mythesis_chatbot/evaluation.py +58 -5
configs/auto_merging.yaml
CHANGED
@@ -2,7 +2,7 @@ source_doc: "Master_Thesis.pdf"
|
|
2 |
rag_mode: "auto-merging retrieval"
|
3 |
llm_openai_model: "gpt-4o-mini"
|
4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
5 |
-
chunk_sizes: [2048, 512
|
6 |
-
similarity_top_k:
|
7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
8 |
rerank_top_n: 2
|
|
|
2 |
rag_mode: "auto-merging retrieval"
|
3 |
llm_openai_model: "gpt-4o-mini"
|
4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
5 |
+
chunk_sizes: [2048, 512]
|
6 |
+
similarity_top_k: 8
|
7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
8 |
rerank_top_n: 2
|
configs/basic.yaml
CHANGED
@@ -2,6 +2,6 @@ source_doc: "Master_Thesis.pdf"
|
|
2 |
rag_mode: "classic retrieval"
|
3 |
llm_openai_model: "gpt-4o-mini"
|
4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
5 |
-
similarity_top_k:
|
6 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
7 |
rerank_top_n: 2
|
|
|
2 |
rag_mode: "classic retrieval"
|
3 |
llm_openai_model: "gpt-4o-mini"
|
4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
5 |
+
similarity_top_k: 10
|
6 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
7 |
rerank_top_n: 2
|
configs/sentence_window.yaml
CHANGED
@@ -2,7 +2,7 @@ source_doc: "Master_Thesis.pdf"
|
|
2 |
rag_mode: "sentence window retrieval"
|
3 |
llm_openai_model: "gpt-4o-mini"
|
4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
5 |
-
sentence_window_size:
|
6 |
similarity_top_k: 6
|
7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
8 |
rerank_top_n: 2
|
|
|
2 |
rag_mode: "sentence window retrieval"
|
3 |
llm_openai_model: "gpt-4o-mini"
|
4 |
embed_model: "BAAI/bge-small-en-v1.5"
|
5 |
+
sentence_window_size: 4
|
6 |
similarity_top_k: 6
|
7 |
rerank_model: "cross-encoder/ms-marco-MiniLM-L-2-v2"
|
8 |
rerank_top_n: 2
|
scripts/app.py
CHANGED
@@ -112,7 +112,7 @@ with open(welcome_message_path, encoding="utf-8") as f:
|
|
112 |
gradio_app = gr.Interface(
|
113 |
fn=chat_bot,
|
114 |
inputs=[
|
115 |
-
gr.Textbox(placeholder=default_message, label="Query"),
|
116 |
gr.Dropdown(
|
117 |
choices=SupportedRags.__args__,
|
118 |
label="RAG mode",
|
|
|
112 |
gradio_app = gr.Interface(
|
113 |
fn=chat_bot,
|
114 |
inputs=[
|
115 |
+
gr.Textbox(placeholder=default_message, label="Query", lines=2),
|
116 |
gr.Dropdown(
|
117 |
choices=SupportedRags.__args__,
|
118 |
label="RAG mode",
|
spaces/welcome_message.md
CHANGED
@@ -11,7 +11,7 @@ Here you get to choose between three RAG techniques:
|
|
11 |
- **auto-merging retrieval**
|
12 |
|
13 |
Feel free to experiment with different modes! Note that a little extra delay is to be expected when switching to another mode.
|
14 |
-
Also, note that all your queries (as well as system responses) are automatically logged on a remote PostgreSQL database for continuous monitoring of the deployed systems.
|
15 |
|
16 |
Each of these systems has been optimized for performance by doing a grid search on the
|
17 |
relevant parameters. Performance is quantified with five metrics:
|
|
|
11 |
- **auto-merging retrieval**
|
12 |
|
13 |
Feel free to experiment with different modes! Note that a little extra delay is to be expected when switching to another mode.
|
14 |
+
Also, note that all your queries (as well as system responses, and evaluation of these responses) are automatically logged on a remote PostgreSQL database for continuous monitoring of the deployed systems.
|
15 |
|
16 |
Each of these systems has been optimized for performance by doing a grid search on the
|
17 |
relevant parameters. Performance is quantified with five metrics:
|
src/mythesis_chatbot/evaluation.py
CHANGED
@@ -1,9 +1,11 @@
|
|
|
|
1 |
from pathlib import Path
|
|
|
2 |
|
3 |
import numpy as np
|
4 |
from tqdm import tqdm
|
5 |
from trulens.apps.llamaindex import TruLlama
|
6 |
-
from trulens.core import Feedback
|
7 |
from trulens.providers.openai import OpenAI
|
8 |
|
9 |
from src.mythesis_chatbot.utils import get_config_hash
|
@@ -23,7 +25,7 @@ def run_evals(eval_questions_path: Path, tru_recorder, query_engine):
|
|
23 |
|
24 |
|
25 |
# Feedback function
|
26 |
-
def f_answer_relevance(provider=OpenAI(), name="Answer Relevance"):
|
27 |
return Feedback(provider.relevance_with_cot_reasons, name=name).on_input_output()
|
28 |
|
29 |
|
@@ -32,7 +34,7 @@ def f_context_relevance(
|
|
32 |
provider=OpenAI(),
|
33 |
context=TruLlama.select_source_nodes().node.text,
|
34 |
name="Context Relevance",
|
35 |
-
):
|
36 |
return (
|
37 |
Feedback(provider.relevance, name=name)
|
38 |
.on_input()
|
@@ -46,7 +48,7 @@ def f_groundedness(
|
|
46 |
provider=OpenAI(),
|
47 |
context=TruLlama.select_source_nodes().node.text,
|
48 |
name="Groundedness",
|
49 |
-
):
|
50 |
return (
|
51 |
Feedback(
|
52 |
provider.groundedness_measure_with_cot_reasons,
|
@@ -59,7 +61,7 @@ def f_groundedness(
|
|
59 |
|
60 |
def get_prebuilt_trulens_recorder(
|
61 |
query_engine, query_engine_config: dict[str, str | int]
|
62 |
-
):
|
63 |
app_name = query_engine_config["rag_mode"]
|
64 |
app_version = get_config_hash(query_engine_config)
|
65 |
|
@@ -71,3 +73,54 @@ def get_prebuilt_trulens_recorder(
|
|
71 |
feedbacks=[f_answer_relevance(), f_context_relevance(), f_groundedness()],
|
72 |
)
|
73 |
return tru_recorder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
from pathlib import Path
|
3 |
+
from typing import Literal
|
4 |
|
5 |
import numpy as np
|
6 |
from tqdm import tqdm
|
7 |
from trulens.apps.llamaindex import TruLlama
|
8 |
+
from trulens.core import Feedback, TruSession
|
9 |
from trulens.providers.openai import OpenAI
|
10 |
|
11 |
from src.mythesis_chatbot.utils import get_config_hash
|
|
|
25 |
|
26 |
|
27 |
# Feedback function
|
28 |
+
def f_answer_relevance(provider=OpenAI(), name="Answer Relevance") -> Feedback:
|
29 |
return Feedback(provider.relevance_with_cot_reasons, name=name).on_input_output()
|
30 |
|
31 |
|
|
|
34 |
provider=OpenAI(),
|
35 |
context=TruLlama.select_source_nodes().node.text,
|
36 |
name="Context Relevance",
|
37 |
+
) -> Feedback:
|
38 |
return (
|
39 |
Feedback(provider.relevance, name=name)
|
40 |
.on_input()
|
|
|
48 |
provider=OpenAI(),
|
49 |
context=TruLlama.select_source_nodes().node.text,
|
50 |
name="Groundedness",
|
51 |
+
) -> Feedback:
|
52 |
return (
|
53 |
Feedback(
|
54 |
provider.groundedness_measure_with_cot_reasons,
|
|
|
61 |
|
62 |
def get_prebuilt_trulens_recorder(
|
63 |
query_engine, query_engine_config: dict[str, str | int]
|
64 |
+
) -> TruLlama:
|
65 |
app_name = query_engine_config["rag_mode"]
|
66 |
app_version = get_config_hash(query_engine_config)
|
67 |
|
|
|
73 |
feedbacks=[f_answer_relevance(), f_context_relevance(), f_groundedness()],
|
74 |
)
|
75 |
return tru_recorder
|
76 |
+
|
77 |
+
|
78 |
+
def get_tru_session(database: Literal["prod", "dev"]) -> TruSession:
|
79 |
+
|
80 |
+
print(f"Connecting to {database.lower()} database...")
|
81 |
+
|
82 |
+
match database.lower():
|
83 |
+
case "prod":
|
84 |
+
database_url = os.getenv("SUPABASE_PROD_CONNECTION_STRING_IPV4")
|
85 |
+
if database_url is None:
|
86 |
+
raise RuntimeError(
|
87 |
+
"IPv4 connection string to production database is not available as"
|
88 |
+
" an environment variable."
|
89 |
+
)
|
90 |
+
else:
|
91 |
+
print("Using IPv4 connection string...")
|
92 |
+
tru = TruSession(database_url=database_url)
|
93 |
+
return tru
|
94 |
+
|
95 |
+
case "dev":
|
96 |
+
database_url = os.getenv("SUPABASE_DEV_CONNECTION_STRING_IPV6")
|
97 |
+
if database_url:
|
98 |
+
try:
|
99 |
+
print("Using IPv6 connection string...")
|
100 |
+
tru = TruSession(database_url=database_url)
|
101 |
+
return tru
|
102 |
+
except Exception as e:
|
103 |
+
print(
|
104 |
+
"An error occurred while connecting to remote dev database with"
|
105 |
+
f" IPv6 connection string: {e}"
|
106 |
+
)
|
107 |
+
print("Reverting to IPv4")
|
108 |
+
else:
|
109 |
+
print(
|
110 |
+
"IPv6 connection string to dev database is not available as an"
|
111 |
+
" environment variable. Reverting to IPv4."
|
112 |
+
)
|
113 |
+
|
114 |
+
database_url = os.getenv("SUPABASE_DEV_CONNECTION_STRING_IPV4")
|
115 |
+
if database_url is None:
|
116 |
+
raise RuntimeError(
|
117 |
+
"IPv4 connection string to dev database is not available"
|
118 |
+
" as an environment variable."
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
tru = TruSession(database_url=database_url)
|
122 |
+
return tru
|
123 |
+
case _:
|
124 |
+
raise ValueError(
|
125 |
+
f"Invalid database: {database}. Choose betwen 'prod' and 'dev'"
|
126 |
+
)
|