import gradio as gr import torch import base64 import fitz # PyMuPDF import tempfile from io import BytesIO from PIL import Image from pathlib import Path from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from olmocr.data.renderpdf import render_pdf_to_base64png from olmocr.prompts.anchor import get_anchor_text from ebooklib import epub import json import html # Load model and processor model = Qwen2VLForConditionalGeneration.from_pretrained( "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 ).eval() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) def process_pdf_to_epub(pdf_file, title, author): pdf_path = pdf_file.name doc = fitz.open(pdf_path) num_pages = len(doc) book = epub.EpubBook() book.set_identifier("id123456") book.set_title(title) book.add_author(author) all_text = "" for i in range(num_pages): page_num = i + 1 print(f"Processing page {page_num}...") try: image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024) anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000) prompt = ( "Below is the image of one page of a document, as well as some raw textual content that was previously " "extracted for it. Just return the plain text representation of this document as if you were reading it naturally.\n" "Do not hallucinate.\n" "RAW_TEXT_START\n" f"{anchor_text}\n" "RAW_TEXT_END" ) messages = [ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image = Image.open(BytesIO(base64.b64decode(image_base64))) inputs = processor( text=[text], images=[image], padding=True, return_tensors="pt", ) inputs = {k: v.to(device) for k, v in inputs.items()} output = model.generate( **inputs, temperature=0.8, max_new_tokens=5096, num_return_sequences=1, do_sample=True, ) prompt_length = inputs["input_ids"].shape[1] new_tokens = output[:, prompt_length:].detach().cpu() decoded = "[No output generated]" if new_tokens is not None and new_tokens.shape[1] > 0: try: decoded_list = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) raw_output = decoded_list[0].strip() if decoded_list else "[No output generated]" try: parsed = json.loads(raw_output) # Only include `natural_text`, drop undesired metadata decoded = parsed.get("natural_text", raw_output) except json.JSONDecodeError: decoded = raw_output except Exception as decode_error: decoded = f"[Decoding error on page {page_num}: {str(decode_error)}]" else: decoded = "[Model returned no new tokens]" except Exception as processing_error: decoded = f"[Processing error on page {page_num}: {str(processing_error)}]" print(f"Decoded content for page {page_num}: {decoded}") # Escape HTML and preserve spacing and math expressions (basic TeX formatting support) escaped_text = html.escape(decoded) # Restore math delimiters after escaping, and preserve line breaks escaped_text = ( escaped_text .replace(r'\[', '