import gradio as gr import torch from PyPDF2 import PdfReader from io import BytesIO from PIL import Image from transformers import AutoProcessor, Qwen2VLForConditionalGeneration from olmocr.data.renderpdf import render_pdf_to_base64png from olmocr.prompts import build_finetuning_prompt from olmocr.prompts.anchor import get_anchor_text from ebooklib import epub import base64 import tempfile import os # Load model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = Qwen2VLForConditionalGeneration.from_pretrained( "allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32 ).eval().to(device) processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") def ocr_page(pdf_path, page_num): # Render page to base64 PNG image_b64 = render_pdf_to_base64png(pdf_path, page_num + 1, target_longest_image_dim=1024) anchor_text = get_anchor_text(pdf_path, page_num + 1, pdf_engine="pdfreport", target_length=4000) prompt = build_finetuning_prompt(anchor_text) messages = [ { "role": "user", "content": [ {"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_b64}"}}, ], } ] prompt_text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) main_image = Image.open(BytesIO(base64.b64decode(image_b64))) inputs = processor(text=[prompt_text], images=[main_image], return_tensors="pt", padding=True) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model.generate( **inputs, temperature=0.8, max_new_tokens=1024, do_sample=True, ) prompt_len = inputs["input_ids"].shape[1] new_tokens = outputs[:, prompt_len:] decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True) return decoded[0] if decoded else "" def convert_pdf_to_epub(pdf_file, title, author, language): with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf: tmp_pdf.write(pdf_file.read()) tmp_pdf_path = tmp_pdf.name reader = PdfReader(tmp_pdf_path) num_pages = len(reader.pages) # Create EPUB book book = epub.EpubBook() book.set_title(title) book.add_author(author) book.set_language(language) # Use first page as cover cover_image_b64 = render_pdf_to_base64png(tmp_pdf_path, 1, target_longest_image_dim=1024) cover_image_bytes = base64.b64decode(cover_image_b64) book.set_cover("cover.jpg", cover_image_bytes) # OCR and add pages for i in range(num_pages): text = ocr_page(tmp_pdf_path, i) chapter = epub.EpubHtml(title=f"Page {i+1}", file_name=f"page_{i+1}.xhtml", lang=language) chapter.content = f"

Page {i+1}

{text}

" book.add_item(chapter) book.spine.append(chapter) # Finalize EPUB book.add_item(epub.EpubNcx()) book.add_item(epub.EpubNav()) epub_path = os.path.join(tempfile.gettempdir(), "output.epub") epub.write_epub(epub_path, book, {}) with open(epub_path, "rb") as f: return epub_path, f.read() def interface_fn(pdf, title, author, language): epub_path, epub_bytes = convert_pdf_to_epub(pdf, title, author, language) return epub_path demo = gr.Interface( fn=interface_fn, inputs=[ gr.File(label="Upload PDF", file_types=[".pdf"]), gr.Textbox(label="EPUB Title", placeholder="e.g. Understanding AI"), gr.Textbox(label="Author", placeholder="e.g. Allen AI"), gr.Textbox(label="Language", placeholder="e.g. en", value="en"), ], outputs=gr.File(label="Download EPUB"), title="PDF to EPUB Converter (olmOCR)", description="Upload a PDF to convert it into a structured EPUB. The first page is used as the cover. OCR is performed with the olmOCR model.", allow_flagging="never", ) if __name__ == "__main__": demo.launch()