|
from abc import ABC |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from matcha.models.components.decoder import Decoder |
|
from matcha.utils.pylogger import get_pylogger |
|
|
|
log = get_pylogger(__name__) |
|
|
|
|
|
class BASECFM(torch.nn.Module, ABC): |
|
def __init__( |
|
self, |
|
n_feats, |
|
cfm_params, |
|
n_spks=1, |
|
spk_emb_dim=128, |
|
): |
|
super().__init__() |
|
self.n_feats = n_feats |
|
self.n_spks = n_spks |
|
self.spk_emb_dim = spk_emb_dim |
|
self.solver = cfm_params.solver |
|
if hasattr(cfm_params, "sigma_min"): |
|
self.sigma_min = cfm_params.sigma_min |
|
else: |
|
self.sigma_min = 1e-4 |
|
|
|
self.estimator = None |
|
|
|
@torch.inference_mode() |
|
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None): |
|
"""Forward diffusion |
|
|
|
Args: |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
n_timesteps (int): number of diffusion steps |
|
temperature (float, optional): temperature for scaling noise. Defaults to 1.0. |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
|
|
Returns: |
|
sample: generated mel-spectrogram |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
z = torch.randn_like(mu) * temperature |
|
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device) |
|
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond) |
|
|
|
def solve_euler(self, x, t_span, mu, mask, spks, cond): |
|
""" |
|
Fixed euler solver for ODEs. |
|
Args: |
|
x (torch.Tensor): random noise |
|
t_span (torch.Tensor): n_timesteps interpolated |
|
shape: (n_timesteps + 1,) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): output_mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker ids. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
cond: Not used but kept for future purposes |
|
""" |
|
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] |
|
|
|
|
|
|
|
sol = [] |
|
|
|
for step in range(1, len(t_span)): |
|
dphi_dt = self.estimator(x, mask, mu, t, spks, cond) |
|
|
|
x = x + dt * dphi_dt |
|
t = t + dt |
|
sol.append(x) |
|
if step < len(t_span) - 1: |
|
dt = t_span[step + 1] - t |
|
|
|
return sol[-1] |
|
|
|
def compute_loss(self, x1, mask, mu, spks=None, cond=None): |
|
"""Computes diffusion loss |
|
|
|
Args: |
|
x1 (torch.Tensor): Target |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
mask (torch.Tensor): target mask |
|
shape: (batch_size, 1, mel_timesteps) |
|
mu (torch.Tensor): output of encoder |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
spks (torch.Tensor, optional): speaker embedding. Defaults to None. |
|
shape: (batch_size, spk_emb_dim) |
|
|
|
Returns: |
|
loss: conditional flow matching loss |
|
y: conditional flow |
|
shape: (batch_size, n_feats, mel_timesteps) |
|
""" |
|
b, _, t = mu.shape |
|
|
|
|
|
t = torch.rand([b, 1, 1], device=mu.device, dtype=mu.dtype) |
|
|
|
z = torch.randn_like(x1) |
|
|
|
y = (1 - (1 - self.sigma_min) * t) * z + t * x1 |
|
u = x1 - (1 - self.sigma_min) * z |
|
|
|
loss = F.mse_loss(self.estimator(y, mask, mu, t.squeeze(), spks), u, reduction="sum") / ( |
|
torch.sum(mask) * u.shape[1] |
|
) |
|
return loss, y |
|
|
|
|
|
class CFM(BASECFM): |
|
def __init__(self, in_channels, out_channel, cfm_params, decoder_params, n_spks=1, spk_emb_dim=64): |
|
super().__init__( |
|
n_feats=in_channels, |
|
cfm_params=cfm_params, |
|
n_spks=n_spks, |
|
spk_emb_dim=spk_emb_dim, |
|
) |
|
|
|
in_channels = in_channels + (spk_emb_dim if n_spks > 1 else 0) |
|
|
|
self.estimator = Decoder(in_channels=in_channels, out_channels=out_channel, **decoder_params) |
|
|