LLMArena's picture
Update app.py with new features from arena
c32157e verified
import argparse
import ast
import glob
import pickle
import traceback
import numpy as np
import pandas as pd
import gradio as gr
import numpy as np
promo_banner = """
<div style="background-color: #ffcc00; color: black; padding: 10px; text-align: center; font-weight: bold; font-size: 18px; border: 2px solid #000;">
USE THE LATEST VERSIONS OF THE BEST CHATBOTS IN RUSSIAN FOR FREE
</div>
"""
deprecated_model_name = [
"GigaChat 3.1.25.3",
"GigaChat-Pro 2.2.25.3",
"saiga_llama3_8b_v6",
"saiga_phi3_medium",
"GigaChat-Plus 3.1.25.3",
"GigaChat-Pro 4.0.26.8",
"GigaChat 4.0.26.8",
"xAI: Grok 2",
"GigaChat-Pro 4.0.26.15",
"GigaChat 4.0.26.15",
"YandexGPT Experimental", "yandex-gpt-arena",
"RefalMachine/ruadapt_llama3_instruct_lep_saiga_kto_ablitirated"
]
models_10b = [
"saiga_llama3_8b_v7",
"Vikhrmodels/Vikhr-YandexGPT-5-Lite-8B-it",
"T-lite-instruct-0.1",
"t-tech/T-lite-it-1.0",
"LLaMA-3 Chat (8B)",
"Llama 3.1 8B Instruct Turbo",
"MTSAIR/Cotype-Nano"
]
def make_default_md_1():
leaderboard_md = f"""
# πŸ† LLM Arena in Russian: Leaderboard
{promo_banner}
"""
return leaderboard_md
def make_default_md_2():
leaderboard_md = f"""
The LLM Arena platform is an open crowdsourcing platform for evaluating large language models (LLM) in Russian. We collect pairwise comparisons from people to rank LLMs using the Bradley-Terry model and display model ratings on the Elo scale.
Chatbot Arena in Russian depends on community participation, so please contribute by casting your vote!
- To **add your model** to the comparison, contact us on TG: [Group](https://t.me/+bFEOl-Bdmok4NGUy)
- If you **found a bug** or **have a suggestion**, contact us: [Roman](https://t.me/roman_kucev)
- You can **contribute your vote** at [llmarena.ru](https://llmarena.ru/)!
"""
return leaderboard_md
def make_arena_leaderboard_md(arena_df, last_updated_time):
# Using version from monitor.py (translated)
total_votes = sum(arena_df["num_battles"]) if not arena_df.empty else 0
total_models = len(arena_df)
space = "Β Β Β " # Using HTML space
leaderboard_md = f"""
Total # of models: **{total_models}**.{space} Total # of votes: **{"{:,}".format(total_votes)}**.{space} Last updated: {last_updated_time}.
***Rank (UB)**: model rating (upper bound), determined as one plus the number of models that are statistically better than the target model.
Model A is statistically better than Model B when the lower bound of Model A's rating is higher than the upper bound of Model B's rating (with a 95% confidence interval).
See Figure 1 below for a visualization of the confidence intervals of model ratings.
"""
return leaderboard_md
def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="site_visitors/medium_prompts:style control"):
total_votes = sum(arena_df["num_battles"]) if not arena_df.empty else 0
total_models = len(arena_df)
space = "Β Β Β "
total_subset_votes = sum(arena_subset_df["num_battles"]) if not arena_subset_df.empty else 0
total_subset_models = len(arena_subset_df)
perc_models = round(total_subset_models / total_models * 100) if total_models > 0 else 0
perc_votes = round(total_subset_votes / total_votes * 100) if total_votes > 0 else 0
leaderboard_md = f"""### {cat_name_to_explanation.get(name, name)}
#### {space} #models: **{total_subset_models} ({perc_models}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({perc_votes}%)**{space}
"""
return leaderboard_md
def model_hyperlink(model_name, link):
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
def filter_deprecated_models_plots(fig, hidden_models=None, limit_to_top=25):
"""
Filters Plotly plots to show only top N models and optionally removes specific models.
Args:
fig: The Plotly figure object.
hidden_models (list, optional): A list of model names to remove. Defaults to None.
limit_to_top (int, optional): Limit display to top N models (0 or None means no limit). Defaults to 25.
Returns:
Plotly figure: The filtered figure object or the original if filtering fails or is not applicable.
"""
if fig is None:
return None
# Check if the figure has data
if not hasattr(fig, 'data') or len(fig.data) == 0:
return fig
# Check if data has a type attribute
if not hasattr(fig.data[0], 'type'):
return fig
# Check minimum number of models after initial hidden_models filtering
models_to_check = []
if hasattr(fig.data[0], 'x'):
models_to_check = fig.data[0].x
elif hasattr(fig.data[0], 'y'): # For some types like bar, X axis might be numeric
models_to_check = fig.data[0].y
if hidden_models is not None and models_to_check.any():
available_models = [x for x in models_to_check if x not in hidden_models]
# print(f"Available models before top N: {len(available_models)}") # Debug
if len(available_models) <= 2: # If less than 3 models remain before top_n
# print(f"Warning: Too few models left after initial filtering ({len(available_models)}), returning original plot.")
return fig # Return the original plot if too few models
if limit_to_top is not None and limit_to_top <= 0:
limit_to_top = None
try:
# Work on a deep copy to avoid modifying the original figure object
fig_copy = pickle.loads(pickle.dumps(fig))
data = fig_copy.data[0]
if data.type == 'heatmap':
# Apply hidden models filter
mask_x = ~np.isin(data.x, hidden_models) if hidden_models is not None else np.ones_like(data.x, dtype=bool)
mask_y = ~np.isin(data.y, hidden_models) if hidden_models is not None else np.ones_like(data.y, dtype=bool)
# Get initially filtered X and Y arrays
filtered_x = np.array(data.x)[mask_x]
filtered_y = np.array(data.y)[mask_y]
# Apply top N limit (assuming the order is already by rank/rating)
if limit_to_top is not None and len(filtered_x) > limit_to_top:
top_models = filtered_x[:limit_to_top]
# Create new masks based on the top models relative to the *original* data axes
mask_x = np.isin(data.x, top_models)
mask_y = np.isin(data.y, top_models)
# Get final filtered axes
filtered_x = np.array(data.x)[mask_x]
filtered_y = np.array(data.y)[mask_y]
elif len(filtered_x) <= 2: # If <=2 models remain after filtering
return fig # Return original
# Update the heatmap data
data.x = filtered_x
data.y = filtered_y
# Important: Indexing 'z' must use masks derived from the *original* data order
z_original = np.array(fig.data[0].z)
data.z = z_original[np.ix_(mask_y, mask_x)]
elif data.type == 'scatter':
trace = data
# Apply hidden models filter
mask = ~np.isin(trace.x, hidden_models) if hidden_models is not None else np.ones_like(trace.x, dtype=bool)
# Get initially filtered arrays
current_x = np.array(trace.x)[mask]
current_y = np.array(trace.y)[mask]
current_text = np.array(trace.text)[mask] if hasattr(trace, 'text') and trace.text is not None else None
# Handle error bars safely
current_error_y_array = np.array(trace.error_y['array'])[mask] if 'error_y' in trace and 'array' in trace.error_y and trace.error_y['array'] is not None else None
current_error_y_arrayminus = np.array(trace.error_y['arrayminus'])[mask] if 'error_y' in trace and 'arrayminus' in trace.error_y and trace.error_y['arrayminus'] is not None else None
# Apply top N limit
if limit_to_top is not None and len(current_x) > limit_to_top:
# Sort by y-value (rating) descending to find the top N
sort_indices = np.argsort(-current_y)[:limit_to_top]
current_x = current_x[sort_indices]
current_y = current_y[sort_indices]
if current_text is not None:
current_text = current_text[sort_indices]
if current_error_y_array is not None:
current_error_y_array = current_error_y_array[sort_indices]
if current_error_y_arrayminus is not None:
current_error_y_arrayminus = current_error_y_arrayminus[sort_indices]
elif len(current_x) <= 2: # If <=2 models remain after filtering
return fig # Return original
# Update the scatter trace data
trace.x, trace.y = current_x, current_y
if current_text is not None:
trace.text = current_text
# Update error bars if they exist
if current_error_y_array is not None:
# Ensure error_y exists before assigning
if 'error_y' not in trace: trace.error_y = {}
trace.error_y['array'] = current_error_y_array
if current_error_y_arrayminus is not None:
if 'error_y' not in trace: trace.error_y = {}
trace.error_y['arrayminus'] = current_error_y_arrayminus
elif data.type == 'bar':
trace = data
# Apply hidden models filter
mask = ~np.isin(trace.x, hidden_models) if hidden_models is not None else np.ones_like(trace.x, dtype=bool)
# Get initially filtered arrays
current_x = np.array(trace.x)[mask]
current_y = np.array(trace.y)[mask]
# Apply top N limit
if limit_to_top is not None and len(current_x) > limit_to_top:
# Sort by y-value (rating) descending
sort_indices = np.argsort(-current_y)[:limit_to_top]
current_x = current_x[sort_indices]
current_y = current_y[sort_indices]
elif len(current_x) <= 2: # If <=2 models remain after filtering
return fig # Return original
# Update the bar trace data
trace.x, trace.y = current_x, current_y
return fig_copy
except Exception as e:
print(f"Error filtering plot: {e}")
traceback.print_exc()
return fig # Return original figure on error
def load_leaderboard_table_csv(filename, add_hyperlink=True):
lines = open(filename).readlines()
heads = [v.strip() for v in lines[0].split(",")]
rows = []
for i in range(1, len(lines)):
row = [v.strip() for v in lines[i].split(",")]
item = {} # Create dictionary once per row
for h, v in zip(heads, row):
if h == "Arena Elo rating":
if v != "-":
try:
v = int(ast.literal_eval(v))
except:
v = np.nan # Handle parsing errors
else:
v = np.nan
item[h] = v
if add_hyperlink and "Model" in item and "Link" in item: # Check keys exist
# Check for empty/missing link
if item["Link"] and item["Link"] != "-":
item["Model"] = model_hyperlink(item["Model"], item["Link"])
# Otherwise, keep the model name as is
rows.append(item)
return rows
def create_ranking_str(ranking, ranking_difference):
# Convert rank to int before comparison
try:
# Ensure rank and difference are treated as numbers
ranking_val = int(float(ranking)) # Handle potential float input
ranking_difference_val = int(float(ranking_difference))
if ranking_difference_val > 0:
return f"{ranking_val} ↑"
elif ranking_difference_val < 0:
return f"{ranking_val} ↓"
else:
return f"{ranking_val}"
except (ValueError, TypeError): # Handle cases where rank is not numeric
return str(ranking)
def recompute_final_ranking(arena_df):
ranking = {}
if arena_df.empty:
return []
model_indices = arena_df.index
# Ensure CI columns exist before trying to access them
if "rating_q025" not in arena_df.columns or "rating_q975" not in arena_df.columns:
print("Warning: Confidence interval columns ('rating_q025', 'rating_q975') not found in DataFrame. Cannot compute UB Rank.")
# Return NaN or simple rank based on order
return [np.nan] * len(model_indices) # Or range(1, len(model_indices) + 1)
ratings_q025 = arena_df["rating_q025"].to_dict()
ratings_q975 = arena_df["rating_q975"].to_dict()
for model_a in model_indices:
rank = 1
rating_a_q975 = ratings_q975.get(model_a)
# Skip if model A has no CI data
if pd.isna(rating_a_q975):
ranking[model_a] = np.nan # Or assign max rank + 1
continue
for model_b in model_indices:
if model_a == model_b:
continue
rating_b_q025 = ratings_q025.get(model_b)
# Skip comparison if model B has no CI data
if pd.isna(rating_b_q025):
continue
# Check if B is statistically better than A
if rating_b_q025 > rating_a_q975:
rank += 1
ranking[model_a] = rank
return list(ranking.values())
def get_arena_table(arena_df, model_table_df, arena_subset_df=None, hidden_models=None):
"""
Generates the leaderboard table data.
'use_cache' parameter removed.
"""
# print(f'Calculating get_arena_table') # Debug
# Create copies to avoid modifying original DataFrames
arena_df_processed = arena_df.copy()
if arena_subset_df is not None:
arena_subset_df_processed = arena_subset_df.copy()
else:
arena_subset_df_processed = None
# Sort by rating initially to have a stable order before ranking
arena_df_processed = arena_df_processed.sort_values(by=["rating"], ascending=False)
# Compute 'final_ranking' based on CIs if possible
if "rating_q025" in arena_df_processed.columns and "rating_q975" in arena_df_processed.columns:
arena_df_processed["final_ranking"] = recompute_final_ranking(arena_df_processed)
arena_df_processed = arena_df_processed.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
else:
# Fallback to simple ordering if CI columns are missing
arena_df_processed["final_ranking"] = range(1, len(arena_df_processed) + 1)
if hidden_models:
arena_df_processed = arena_df_processed[~arena_df_processed.index.isin(hidden_models)].copy()
# Recompute ranks for the filtered view
if "rating_q025" in arena_df_processed.columns and "rating_q975" in arena_df_processed.columns:
arena_df_processed["final_ranking"] = recompute_final_ranking(arena_df_processed)
# Re-sort based on new ranks
arena_df_processed = arena_df_processed.sort_values(
by=["final_ranking", "rating"], ascending=[True, False]
)
else:
arena_df_processed["final_ranking"] = range(1, len(arena_df_processed) + 1)
if arena_subset_df_processed is not None:
# Filter subset by hidden_models first
if hidden_models:
arena_subset_df_processed = arena_subset_df_processed[~arena_subset_df_processed.index.isin(hidden_models)].copy()
# Ensure models in the subset are also present in the (filtered) main view
arena_subset_df_processed = arena_subset_df_processed[arena_subset_df_processed.index.isin(arena_df_processed.index)]
# Proceed only if subset is not empty and has CI columns
if not arena_subset_df_processed.empty and "rating_q025" in arena_subset_df_processed.columns and "rating_q975" in arena_subset_df_processed.columns:
# Rank within the subset
arena_subset_df_processed = arena_subset_df_processed.sort_values(by=["rating"], ascending=False)
arena_subset_df_processed["final_ranking_subset"] = recompute_final_ranking(arena_subset_df_processed) # Rank within category
# Filter the main processed DF to only include models from the subset
# 'final_ranking' here represents the rank *among these models* in the baseline category view
arena_df_for_join = arena_df_processed[arena_df_processed.index.isin(arena_subset_df_processed.index)][["final_ranking", "rating"]].copy()
arena_df_for_join.rename(columns={"final_ranking": "final_ranking_baseline"}, inplace=True)
# Join the subset ranks and baseline ranks
arena_df_combined = arena_subset_df_processed[["final_ranking_subset", "rating"]].join(
arena_df_for_join["final_ranking_baseline"], how="inner"
)
# Calculate rank difference
arena_df_combined["ranking_difference"] = arena_df_combined["final_ranking_baseline"] - arena_df_combined["final_ranking_subset"]
# Sort by subset rank and rating
arena_df_combined = arena_df_combined.sort_values(
by=["final_ranking_subset", "rating"], ascending=[True, False]
)
# Format the rank string with delta for display
arena_df_combined["display_ranking"] = arena_df_combined.apply(
lambda x: create_ranking_str(x["final_ranking_subset"], x["ranking_difference"]),
axis=1,
)
arena_df_processed = arena_df_processed.loc[arena_df_combined.index] # Reorder arena_df_processed
columns_to_join = ["display_ranking", "ranking_difference", "final_ranking_subset"]
columns_to_join = [col for col in columns_to_join if col in arena_df_combined.columns]
arena_df_processed = arena_df_processed.join(arena_df_combined[columns_to_join], how="inner")
# Now sorting should work as the column exists
# Use the subset rank for final sorting if subset is active
# Check if 'final_ranking_subset' was successfully joined before sorting
if "final_ranking_subset" in arena_df_processed.columns:
arena_df_processed.sort_values(by=["final_ranking_subset", "rating"], ascending=[True, False], inplace=True)
else:
# Fallback sort if join failed for some reason
arena_df_processed.sort_values(by=["rating"], ascending=False, inplace=True)
else:
# If subset is empty or lacks CI, disable subset logic
arena_subset_df_processed = None
# Use the baseline ranking as the display ranking
arena_df_processed["display_ranking"] = arena_df_processed["final_ranking"].astype(str)
arena_df_processed.sort_values(by=["final_ranking", "rating"], ascending=[True, False], inplace=True)
else:
# If no subset is used, display ranking is just the final rank from the main DF
arena_df_processed["display_ranking"] = arena_df_processed["final_ranking"].astype(str)
# Ensure it's sorted correctly
arena_df_processed.sort_values(by=["final_ranking", "rating"], ascending=[True, False], inplace=True)
values = []
# Iterate using the final sorted index of arena_df_processed
for model_key in arena_df_processed.index:
row_data = arena_df_processed.loc[model_key]
# Find model metadata
model_info = model_table_df[model_table_df["key"] == model_key]
if model_info.empty:
# print(f"Warning: Model key '{model_key}' not found in model_table_df. Skipping.")
continue # Skip if no metadata
row = []
# Rank (Display)
row.append(row_data.get("display_ranking", "")) # Use the calculated display rank
# Delta (only if subset was processed successfully)
if arena_subset_df_processed is not None:
row.append(row_data.get("ranking_difference", 0))
# Model Name (hyperlink applied during loading)
row.append(model_info["Model"].values[0])
# Arena Elo
row.append(round(row_data["rating"]))
# 95% CI
# Check for NaN before calculation
upper_rating = row_data.get("rating_q975")
lower_rating = row_data.get("rating_q025")
current_rating = row_data.get("rating")
upper_diff = round(upper_rating - current_rating) if pd.notna(upper_rating) and pd.notna(current_rating) else '?'
lower_diff = round(current_rating - lower_rating) if pd.notna(current_rating) and pd.notna(lower_rating) else '?'
row.append(f"+{upper_diff}/-{lower_diff}")
# Votes
row.append(round(row_data["num_battles"]))
# Organization
row.append(model_info["Organization"].values[0])
# License
row.append(model_info["License"].values[0])
# Knowledge Cutoff
cutoff_date = model_info["Knowledge cutoff date"].values[0]
row.append("Unknown" if cutoff_date == "-" else cutoff_date)
values.append(row)
return values
key_to_category_name = {
# Mapping from internal key to display name (kept English for consistency)
"full": "Overall", # Might not be used if filtered out later
"crowdsourcing/simple_prompts": "crowdsourcing/simple_prompts",
"site_visitors/medium_prompts": "site_visitors/medium_prompts",
"site_visitors/medium_prompts:style control": "site_visitors/medium_prompts:style_control" # Use underscore for display consistency if needed
}
cat_name_to_explanation = {
# Translated explanations for display
"Overall": "All queries",
"crowdsourcing/simple_prompts": "Queries collected via crowdsourcing. Mostly simple ones.",
"site_visitors/medium_prompts": "Queries from website visitors. Contain more complex prompts.",
"site_visitors/medium_prompts:style_control": "Queries from website visitors. Contain more complex prompts. [Reduced stylistic influence](https://lmsys.org/blog/2024-08-28-style-control/) of the response on the rating."
}
cat_name_to_baseline = {
# Baseline category for comparison (if needed, seems unused now but kept)
# "Hard Prompts (English)": "English",
}
actual_categories = [
# Categories available in the dropdown (use the *keys* from key_to_category_name)
# "Overall", # Removed
# "crowdsourcing/simple_prompts", # Removed
"site_visitors/medium_prompts",
"site_visitors/medium_prompts:style control"
]
# Default selected category key
req_cat_key = "site_visitors/medium_prompts:style control"
selected_category_key = req_cat_key if req_cat_key in actual_categories else ("site_visitors/medium_prompts" if "site_visitors/medium_prompts" in actual_categories else (actual_categories[0] if actual_categories else None))
# Get the display name for the selected category
selected_category_display_name = key_to_category_name.get(selected_category_key, selected_category_key) # Fallback to key if not found
def read_elo_file(elo_results_file, leaderboard_table_file):
# Version from monitor.py, but no lazy_load or caching
print('Reading Elo file...')
arena_dfs = {}
category_elo_results = {}
last_updated_time = "N/A" # Default value
elo_results = {} # Default value
model_table_df = pd.DataFrame() # Default value
try:
# Use context manager for file operations
with open(elo_results_file, "rb") as fin:
elo_results = pickle.load(fin)
# Try to get last updated time from primary or fallback categories
main_cat_key = "site_visitors/medium_prompts:style control"
fallback_cat_key_1 = "site_visitors/medium_prompts"
fallback_cat_key_2 = "full" # Another fallback
if main_cat_key in elo_results and "last_updated_datetime" in elo_results[main_cat_key]:
last_updated_time = elo_results[main_cat_key]["last_updated_datetime"].split(" ")[0]
elif fallback_cat_key_1 in elo_results and "last_updated_datetime" in elo_results[fallback_cat_key_1]:
last_updated_time = elo_results[fallback_cat_key_1]["last_updated_datetime"].split(" ")[0]
elif fallback_cat_key_2 in elo_results and "last_updated_datetime" in elo_results[fallback_cat_key_2]:
last_updated_time = elo_results[fallback_cat_key_2]["last_updated_datetime"].split(" ")[0]
# Iterate through defined category keys
for key in key_to_category_name.keys():
display_name = key_to_category_name[key] # Get the display name
if key in elo_results:
# Check for required data within the category result
if "leaderboard_table_df" in elo_results[key] and isinstance(elo_results[key]["leaderboard_table_df"], pd.DataFrame):
df = elo_results[key]["leaderboard_table_df"]
# Filter by number of battles > 200
# Store using the *display_name* as the key for consistency with dropdown/UI
arena_dfs[display_name] = df[df["num_battles"] > 200].copy()
category_elo_results[display_name] = elo_results[key]
# else:
# print(f"Warning: 'leaderboard_table_df' not found or not a DataFrame for key '{key}'")
# else:
# print(f"Warning: Key '{key}' not found in elo_results")
# Load model metadata CSV
data = load_leaderboard_table_csv(leaderboard_table_file)
model_table_df = pd.DataFrame(data)
except FileNotFoundError:
print(f"Error: Elo results file not found at {elo_results_file}")
# Return empty structures
except Exception as e:
print(f"Error reading elo file: {e}")
traceback.print_exc()
# Return empty structures
# Ensure correct data types are returned even on error
return last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df
def build_leaderboard_tab(
elo_results_file, leaderboard_table_file, show_plot=False, mirror=False
):
# Load data once during build time
try:
last_updated_time, arena_dfs, category_elo_results, elo_results, model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
except Exception as e:
print(f"Failed to load initial data: {e}")
# Set empty defaults to prevent app crash
last_updated_time = "Error"
arena_dfs = {}
category_elo_results = {}
elo_results = {}
model_table_df = pd.DataFrame()
# Get data for the default selected category
# Use the *display name* derived from the selected key
if selected_category_display_name in arena_dfs:
arena_df = arena_dfs[selected_category_display_name]
elo_subset_results_init = category_elo_results[selected_category_display_name]
p1_init = elo_subset_results_init.get("win_fraction_heatmap")
p2_init = elo_subset_results_init.get("battle_count_heatmap")
p3_init = elo_subset_results_init.get("bootstrap_elo_rating")
p4_init = elo_subset_results_init.get("average_win_rate_bar")
else:
# Fallback if default category is missing
fallback_cat_display_name = None
if actual_categories:
# Try the first actual category's display name
first_cat_key = actual_categories[0]
fallback_cat_display_name = key_to_category_name.get(first_cat_key, first_cat_key)
if fallback_cat_display_name and fallback_cat_display_name in arena_dfs:
print(f"Warning: Selected category '{selected_category_display_name}' not found. Falling back to '{fallback_cat_display_name}'.")
arena_df = arena_dfs[fallback_cat_display_name]
elo_subset_results_init = category_elo_results[fallback_cat_display_name]
p1_init = elo_subset_results_init.get("win_fraction_heatmap")
p2_init = elo_subset_results_init.get("battle_count_heatmap")
p3_init = elo_subset_results_init.get("bootstrap_elo_rating")
p4_init = elo_subset_results_init.get("average_win_rate_bar")
else:
print(f"Warning: Default category '{selected_category_display_name}' and fallback categories not found in data.")
arena_df = pd.DataFrame() # Empty DataFrame
p1_init, p2_init, p3_init, p4_init = None, None, None, None
# Apply initial filtering to plots
p1_init = filter_deprecated_models_plots(p1_init, hidden_models=deprecated_model_name)
p2_init = filter_deprecated_models_plots(p2_init, hidden_models=deprecated_model_name)
p3_init = filter_deprecated_models_plots(p3_init, hidden_models=deprecated_model_name)
p4_init = filter_deprecated_models_plots(p4_init, hidden_models=deprecated_model_name)
default_md = make_default_md_1() # Parameters removed
default_md_2 = make_default_md_2() # Parameters removed
with gr.Row():
with gr.Column(scale=4):
# Removed Vote button
md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
with gr.Column(scale=1):
vote_button = gr.Button("Vote!", link="https://llmarena.ru")
md_2 = gr.Markdown(default_md_2, elem_id="leaderboard_markdown")
# Generate initial table data
if not arena_df.empty and not model_table_df.empty:
# Pass the baseline DF and the model table; initially no subset difference is shown
arena_table_vals_init = get_arena_table(arena_df, model_table_df, hidden_models=deprecated_model_name)
else:
arena_table_vals_init = []
# Single "Arena" tab
with gr.Tab("Arena", id=0): # Removed Tabs() as only one tab
md_arena = make_arena_leaderboard_md(arena_df, last_updated_time)
lb_description = gr.Markdown(md_arena, elem_id="leaderboard_markdown")
with gr.Row():
with gr.Column(scale=2):
# Use *display names* for choices if they differ significantly from keys,
# but here keys are descriptive enough. Callback receives the *key*.
category_dropdown = gr.Dropdown(
# Choices should be the *keys* corresponding to display names
choices=actual_categories,
value=selected_category_key, # Use the key for the default value
label="Category", # Translated
)
with gr.Column(scale=2):
category_checkbox = gr.CheckboxGroup(
# Use user-friendly translated labels
["Show Deprecated", "Only <10B Models"], # Adjusted label for clarity
label="Apply Filter",
info="",
value=[], # Filters off by default
)
# Category details
default_category_details = make_category_arena_leaderboard_md(
arena_df, arena_df, name=selected_category_display_name # Pass arena_df twice for initial display
) if not arena_df.empty else "No data for category"
with gr.Column(scale=4, variant="panel"):
category_deets = gr.Markdown(
default_category_details, elem_id="category_deets"
)
# DataFrame for displaying the table
# Initial view doesn't have 'Delta' column
arena_vals = pd.DataFrame(
arena_table_vals_init,
columns=[
"Rank* (UB)", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
]
) if arena_table_vals_init else pd.DataFrame(columns=[ # Handle empty initial data
"Rank* (UB)", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
])
# Sort by Elo for initial display
if "Arena Elo" in arena_vals.columns:
arena_vals = arena_vals.sort_values(by="Arena Elo", ascending=False)
elo_display_df = gr.Dataframe(
headers=[ # Translated headers
"Rank* (UB)", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
],
datatype=[
"str", "markdown", "number", "str",
"number", "str", "str", "str"
],
value=arena_vals.style, # Apply Pandas styling if needed
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 100, 100, 90, 130, 150, 100], # Widths from monitor.py
wrap=True,
)
gr.Markdown(elem_id="leaderboard_markdown") # Empty markdown for spacing
plot_1, plot_2, plot_3, plot_4 = None, None, None, None # Initialize plot variables
more_stats_md = None # Initialize markdown variable
if show_plot:
more_stats_md = gr.Markdown(
f"""## More Statistics for Chatbot Arena""", # Translated
elem_id="leaderboard_header_markdown",
)
with gr.Row(elem_id="leaderboard_bars"): # Use ID from monitor.py
with gr.Column():
gr.Markdown( # Translated title
"#### Figure 1: Confidence Intervals on Model Strength (via Bootstrapping)",
elem_id="plot-title",
)
plot_3 = gr.Plot(p3_init, show_label=False) # Use initial data
with gr.Column():
gr.Markdown( # Translated title
"#### Figure 2: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)",
elem_id="plot-title",
)
plot_4 = gr.Plot(p4_init, show_label=False) # Use initial data
with gr.Row(elem_id="leaderboard_plots"): # Use ID from monitor.py
with gr.Column():
gr.Markdown( # Translated title
"#### Figure 3: Fraction of Model A Wins for All Non-tied A vs. B Battles",
elem_id="plot-title",
)
plot_1 = gr.Plot(
p1_init, show_label=False, elem_id="plot-container" # Use initial data
)
with gr.Column():
gr.Markdown( # Translated title
"#### Figure 4: Battle Count for Each Combination of Models (without Ties)",
elem_id="plot-title",
)
plot_2 = gr.Plot(p2_init, show_label=False) # Use initial data
def update_leaderboard_df(arena_table_vals):
# Add error handling for empty or incorrect data
# Expects 9 columns when Delta is present
if not arena_table_vals or not isinstance(arena_table_vals, list) or not arena_table_vals[0] or len(arena_table_vals[0]) != 9:
print("Warning: Invalid data for styling in update_leaderboard_df. Returning empty DataFrame.")
# Return an empty styled DataFrame to avoid Gradio errors
empty_styled = pd.DataFrame(columns=[
"Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
]).style
return empty_styled
try:
elo_datarame = pd.DataFrame(
arena_table_vals,
columns=[
"Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
],
)
def highlight_max(s):
# Check rank string for arrows
return [
"color: green; font-weight: bold" if "↑" in str(v) else
"color: red; font-weight: bold" if "↓" in str(v) else ""
for v in s
]
def highlight_rank_max(s):
# Check Delta value (ensure it's numeric)
return [
"color: green; font-weight: bold" if isinstance(v, (int, float)) and v > 0 else
"color: red; font-weight: bold" if isinstance(v, (int, float)) and v < 0 else ""
for v in s
]
# Apply styles
styled_df = elo_datarame.style.apply(highlight_max, subset=["Rank* (UB)"]).apply(
highlight_rank_max, subset=["Delta"]
)
return styled_df
except Exception as e:
print(f"Error applying styles in update_leaderboard_df: {e}")
traceback.print_exc()
# Return unstyled DataFrame on error
return pd.DataFrame(arena_table_vals, columns=[
"Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
]).style
def update_leaderboard_and_plots(category_key, filters): # Receives category *key* from dropdown
# No caching
# Reload data on each call
try:
current_last_updated_time, current_arena_dfs, current_category_elo_results, _, current_model_table_df = read_elo_file(elo_results_file, leaderboard_table_file)
except Exception as e:
print(f"Error reloading data in callback: {e}")
# Return empty updates to prevent UI crash
empty_df_update = gr.Dataframe(value=pd.DataFrame().style) # Empty DataFrame
empty_plot_update = gr.Plot(value=None) # Empty Plot
empty_md_update = gr.Markdown(value="Error loading data.") # Error Markdown
# Match the number of outputs expected by the .change() call
num_plots = 4 if show_plot else 0
return [empty_df_update] + [empty_plot_update] * num_plots + [empty_md_update, empty_md_update]
# Use the display name corresponding to the selected key
category_display_name = key_to_category_name.get(category_key, category_key)
# Check if data exists for the selected category (using display name as key now)
if not current_arena_dfs or category_display_name not in current_arena_dfs or category_display_name not in current_category_elo_results or current_model_table_df.empty:
print(f"Warning: Data missing for category '{category_display_name}' (key: '{category_key}') after reload.")
empty_df_update = gr.Dataframe(value=pd.DataFrame().style)
empty_plot_update = gr.Plot(value=None)
empty_md_update = gr.Markdown(value=f"No data available for category: {category_display_name}")
num_plots = 4 if show_plot else 0
# Match the number of outputs
return [empty_df_update] + [empty_plot_update] * num_plots + [empty_md_update, empty_md_update]
# Get the specific data slices using the display name
arena_subset_df = current_arena_dfs[category_display_name]
elo_subset_results = current_category_elo_results[category_display_name]
# Use the hardcoded baseline key, get its display name
baseline_key = "site_visitors/medium_prompts:style control"
baseline_display_name = key_to_category_name.get(baseline_key, baseline_key)
# Fallback if baseline is missing
if baseline_display_name not in current_arena_dfs:
print(f"Warning: Baseline category '{baseline_display_name}' not found. Using selected category '{category_display_name}' as baseline.")
baseline_display_name = category_display_name # Fallback to the selected category itself
arena_df_baseline = current_arena_dfs[baseline_display_name]
hidden_models_list = None # Default: show all
# Check filter labels (must match the translated CheckboxGroup choices)
if "Show Deprecated" not in filters:
hidden_models_list = deprecated_model_name.copy() # Hide deprecated
if "Only <10B Models" in filters:
# Get all models currently in the baseline view
all_models_in_view = arena_df_baseline.index.tolist()
# Find models *not* in the allowed list
models_to_hide = [model for model in all_models_in_view if model not in models_10b]
if hidden_models_list is None: # If deprecated are not hidden
hidden_models_list = models_to_hide
else: # If deprecated are already hidden, add the non-<10B ones
# Use set to avoid duplicates
hidden_models_list = list(set(hidden_models_list + models_to_hide))
arena_table_values = get_arena_table(
arena_df_baseline, # Use the determined baseline DataFrame
current_model_table_df,
# Pass subset only if it's different from the baseline
arena_subset_df=(arena_subset_df if category_display_name != baseline_display_name else None),
hidden_models=hidden_models_list
)
dataframe_update = None
# Show Delta column only if category is not the baseline and data exists
if category_display_name != baseline_display_name and arena_table_values:
styled_arena_values = update_leaderboard_df(arena_table_values) # Apply styling with Delta
# Check if styling was successful
if isinstance(styled_arena_values, pd.io.formats.style.Styler) and not styled_arena_values.data.empty:
dataframe_update = gr.Dataframe(
headers=[ # Headers including Delta
"Rank* (UB)", "Delta", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
],
datatype=[
"str", "number", "markdown", "number", "str",
"number", "str", "str", "str"
],
value=styled_arena_values, # Pass the Styler object
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 70, 200, 90, 100, 90, 120, 150, 100], # Widths with Delta
wrap=True,
)
else: # Handle styling failure
dataframe_update = gr.Dataframe(value=pd.DataFrame().style) # Empty update
else: # Baseline category or no data for Delta
# Ensure data exists before creating DataFrame
if arena_table_values:
# Create DataFrame without Delta column from the raw values
df_no_delta = pd.DataFrame(arena_table_values, columns=[
"Rank* (UB)", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
])
dataframe_update = gr.Dataframe(
headers=[ # Headers without Delta
"Rank* (UB)", "Model", "Arena Elo", "95% CI",
"Votes", "Organization", "License", "Knowledge Cutoff"
],
datatype=[
"str", "markdown", "number", "str", "number",
"str", "str", "str"
],
value=df_no_delta.style, # Apply basic Pandas styling
elem_id="arena_leaderboard_dataframe",
height=700,
column_widths=[70, 190, 100, 100, 90, 130, 150, 100], # Widths without Delta
wrap=True,
)
else:
dataframe_update = gr.Dataframe(value=pd.DataFrame().style) # Empty update
plot_updates = [gr.Plot(value=None)] * 4 # Default empty plot updates
if show_plot:
p1_updated = elo_subset_results.get("win_fraction_heatmap")
p2_updated = elo_subset_results.get("battle_count_heatmap")
p3_updated = elo_subset_results.get("bootstrap_elo_rating")
p4_updated = elo_subset_results.get("average_win_rate_bar")
# Filter plots
p1_filtered = filter_deprecated_models_plots(p1_updated, hidden_models=hidden_models_list)
p2_filtered = filter_deprecated_models_plots(p2_updated, hidden_models=hidden_models_list)
p3_filtered = filter_deprecated_models_plots(p3_updated, hidden_models=hidden_models_list)
p4_filtered = filter_deprecated_models_plots(p4_updated, hidden_models=hidden_models_list)
plot_updates = [p1_filtered, p2_filtered, p3_filtered, p4_filtered]
more_stats_md_updated_text = f"""## More Statistics for Chatbot Arena - {category_display_name} """ if show_plot else ""
more_stats_md_update = gr.Markdown(value=more_stats_md_updated_text)
# Use baseline DF for total counts, subset DF for category-specific counts
category_details_md_updated_text = make_category_arena_leaderboard_md(
arena_df_baseline, arena_subset_df, name=category_display_name # Pass display name
)
category_deets_update = gr.Markdown(value=category_details_md_updated_text)
# Return updates in the correct order matching outputs list
# Order: df, p1, p2, p3, p4, more_stats_md, category_deets
return [dataframe_update] + plot_updates + [more_stats_md_update, category_deets_update]
# Define output components (must exist in the UI build)
outputs_list = [elo_display_df]
if show_plot:
# Add plot components if they exist
outputs_list.extend([plot_1, plot_2, plot_3, plot_4])
# Add markdown component if it exists
if more_stats_md: outputs_list.append(more_stats_md)
else: outputs_list.append(gr.Markdown(visible=False)) # Placeholder if MD wasn't created
else:
# Add placeholders if plots/MD are not shown
outputs_list.extend([gr.Plot(visible=False)] * 4)
outputs_list.append(gr.Markdown(visible=False))
outputs_list.append(category_deets) # Always update category details
# Attach change listeners
category_dropdown.change(
fn=update_leaderboard_and_plots,
inputs=[category_dropdown, category_checkbox],
outputs=outputs_list
)
category_checkbox.change(
fn=update_leaderboard_and_plots, # Use the same function
inputs=[category_dropdown, category_checkbox],
outputs=outputs_list
)
return_components = [md_1, md_2, lb_description, category_deets, elo_display_df]
if show_plot:
# Add plots if they were created
return_components.extend([plot_1, plot_2, plot_3, plot_4])
# Add the extra stats markdown if it was created
if more_stats_md: return_components.append(more_stats_md)
return return_components
def build_demo(elo_results_file, leaderboard_table_file):
# Assumes block_css is available or defined elsewhere
try:
from fastchat.serve.gradio_web_server import block_css
except ImportError:
print("Warning: fastchat.serve.gradio_web_server.block_css not found. Using fallback CSS.")
# Define a minimal fallback CSS or copy the content here
block_css = """
/* Add minimal CSS rules here if needed */
#arena_leaderboard_dataframe table { font-size: 105%; }
#leaderboard_markdown .prose { font-size: 110% !important; }
.app { max-width: 100% !important; padding: 20px !important; }
a { color: #1976D2; text-decoration: none; }
a:hover { color: #63A4FF; text-decoration: underline; }
"""
text_size = gr.themes.sizes.text_lg
# Assumes theme.json is present
try:
theme = gr.themes.Default.load("theme.json")
except:
print("Warning: theme.json not found. Using default Gradio theme.")
theme = gr.themes.Default(text_size=text_size) # Fallback theme
if hasattr(theme, 'text_size'): theme.text_size = text_size
# Apply custom settings if theme object supports it
if hasattr(theme, 'set'):
theme.set(
button_large_text_size="40px",
button_small_text_size="40px",
button_large_text_weight="1000",
button_small_text_weight="1000",
button_shadow="*shadow_drop_lg",
button_shadow_hover="*shadow_drop_lg",
checkbox_label_shadow="*shadow_drop_lg",
button_shadow_active="*shadow_inset",
button_secondary_background_fill="*primary_300",
button_secondary_background_fill_dark="*primary_700",
button_secondary_background_fill_hover="*primary_200",
button_secondary_background_fill_hover_dark="*primary_500",
button_secondary_text_color="*primary_800",
button_secondary_text_color_dark="white",
)
with gr.Blocks(
title="LLM Arena: Leaderboard", # Translated title
theme=theme,
css=block_css, # Use loaded or fallback CSS
) as demo:
# Build only the leaderboard tab content
# show_plot=True to display plots
leader_components = build_leaderboard_tab(
elo_results_file, leaderboard_table_file, show_plot=True, mirror=False
)
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", default=False) # Default False for HF
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
# Removed args specific to monitor.py
args = parser.parse_args()
try:
elo_result_files = glob.glob("elo_results_*.pkl")
if not elo_result_files:
raise FileNotFoundError("No elo_results_*.pkl files found.")
# More robust sorting extracting the number
elo_result_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
elo_result_file = elo_result_files[-1]
print(f"Using Elo results file: {elo_result_file}")
except Exception as e:
print(f"Error finding Elo results file: {e}")
print("Please ensure a file matching 'elo_results_NUMBER.pkl' exists.")
exit(1) # Exit if file not found
try:
leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
if not leaderboard_table_files:
raise FileNotFoundError("No leaderboard_table_*.csv files found.")
leaderboard_table_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
leaderboard_table_file = leaderboard_table_files[-1]
print(f"Using leaderboard table file: {leaderboard_table_file}")
except Exception as e:
print(f"Error finding leaderboard table file: {e}")
print("Please ensure a file matching 'leaderboard_table_NUMBER.csv' exists.")
exit(1) # Exit if file not found
demo = build_demo(elo_result_file, leaderboard_table_file)
# Launch with args
demo.launch(
server_name=args.host,
server_port=args.port,
share=args.share,
show_api=False
)