Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from PIL import Image | |
from io import BytesIO | |
import base64 | |
import numpy as np | |
import os | |
import torch | |
from transformers import StoppingCriteria | |
from .constants import IMAGE_TOKEN_INDEX | |
import tempfile | |
from io import BytesIO | |
def get_frame_from_vcap(vidcap, num_frames=10, fps=None, frame_count=None): | |
import cv2 | |
if fps == None or frame_count == None: | |
# if one of fps or frame_count is None, still recompute | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frame_count = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if fps == 0 or frame_count == 0: | |
print("Video file not found. return empty images.") | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * num_frames | |
duration = frame_count / fps | |
frame_interval = frame_count // num_frames | |
if frame_interval == 0 and frame_count <= 1: | |
print("frame_interval is equal to 0. return empty image.") | |
return [ | |
Image.new("RGB", (720, 720)), | |
] * num_frames | |
# print("duration:", duration, "frames:", frame_count, "intervals:", frame_interval) | |
images = [] | |
count = 0 | |
success = True | |
frame_indices = np.linspace(0, frame_count - 2, num_frames, dtype=int) | |
while success: | |
# print("frame_count:", frame_count, "count:", count, "num_frames:", num_frames, "frame_interval:", frame_interval) | |
if frame_count >= num_frames: | |
success, frame = vidcap.read() | |
if count in frame_indices: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
if len(images) >= num_frames: | |
return images | |
count += 1 | |
else: | |
# Left padding frames if the video is not long enough | |
success, frame = vidcap.read() | |
if success: | |
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
im_pil = Image.fromarray(img) | |
images.append(im_pil) | |
count += 1 | |
elif count >= 1: | |
width, height = images[-1].size | |
images = [Image.new("RGB", (width, height))] * \ | |
(num_frames - len(images)) + images | |
print("padding frames:", (num_frames - len(images))) | |
return images | |
else: | |
break | |
raise ValueError( | |
"Did not find enough frames in the video. return empty image.") | |
def opencv_extract_frames(vpath_or_bytesio, frames=6, fps=None, frame_count=None): | |
""" | |
Extract frames from a video using OpenCV. | |
Args: | |
vpath_or_bytesio (str or BytesIO): Path to the video file or BytesIO object containing the video. | |
frames (int): Number of frames to extract from the video. | |
Returns: | |
list: List of PIL Images extracted from the video. | |
Raises: | |
NotImplementedError: If the type of `vpath_or_bytesio` is not supported. | |
""" | |
import cv2 | |
if isinstance(vpath_or_bytesio, str): | |
vidcap = cv2.VideoCapture(vpath_or_bytesio) | |
return get_frame_from_vcap(vidcap, frames, fps=fps, frame_count=frame_count) | |
elif isinstance(vpath_or_bytesio, (BytesIO,)): | |
# assuming mp4 | |
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp4") as temp_video: | |
temp_video.write(vpath_or_bytesio.read()) | |
temp_video_name = temp_video.name | |
vidcap = cv2.VideoCapture(temp_video_name) | |
return get_frame_from_vcap(vidcap, frames, fps=fps, frame_count=frame_count) | |
else: | |
raise NotImplementedError(type(vpath_or_bytesio)) | |
def load_image_from_base64(image): | |
return Image.open(BytesIO(base64.b64decode(image))) | |
def expand2square(pil_img, background_color): | |
""" | |
Expand the given PIL image to a square shape by adding padding. | |
Parameters: | |
- pil_img: The PIL image to be expanded. | |
- background_color: The color of the padding to be added. | |
Returns: | |
- The expanded PIL image. | |
If the image is already square, it is returned as is. | |
If the image is wider than it is tall, padding is added to the top and bottom. | |
If the image is taller than it is wide, padding is added to the left and right. | |
""" | |
width, height = pil_img.size | |
if pil_img.mode == 'L': | |
background_color = background_color[0] | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def process_image(image_file, data_args, image_folder, pil_preprocess_fn=None): | |
processor = data_args.image_processor | |
if isinstance(image_file, str): | |
if image_folder is not None: | |
image = Image.open(os.path.join( | |
image_folder, image_file)).convert("RGB") | |
else: | |
image = Image.open(image_file).convert("RGB") | |
else: | |
# image is stored in bytearray | |
image = image_file.convert("RGB") | |
info = None | |
if pil_preprocess_fn is not None: | |
image = pil_preprocess_fn(image) | |
if isinstance(image, tuple): | |
image, info = image | |
if data_args.image_aspect_ratio == "resize": | |
if hasattr(data_args.image_processor, "crop_size"): | |
# CLIP vision tower | |
crop_size = data_args.image_processor.crop_size | |
else: | |
# SIGLIP vision tower | |
assert hasattr(data_args.image_processor, "size") | |
crop_size = data_args.image_processor.size | |
image = image.resize((crop_size["height"], crop_size["width"])) | |
if data_args.image_aspect_ratio == "pad": | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new( | |
pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new( | |
pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image, tuple(int(x * 255) | |
for x in processor.image_mean)) | |
image = processor.preprocess(image, return_tensors="pt")[ | |
"pixel_values"][0] | |
else: | |
# Using default behavior of the vision encoder | |
# For CLIP, default is central crop | |
# For Radio, default is central crop | |
# For Siglip, default is resize | |
# For InternVIT, default is resize | |
image = processor.preprocess(image, return_tensors="pt")[ | |
"pixel_values"][0] | |
if info is not None: | |
return image, info | |
return image | |
def process_images(images, image_processor, model_cfg): | |
model_cfg.image_processor = image_processor | |
new_images = [process_image(image, model_cfg, None) for image in images] | |
if all(x.shape == new_images[0].shape for x in new_images): | |
new_images = torch.stack(new_images, dim=0) | |
return new_images | |
# Note that newer VILA codebase adds an lstrip option that defaults to False, and the functionality is the same by default | |
def tokenizer_image_token( | |
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None | |
): | |
prompt_chunks = [ | |
tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] | |
def insert_separator(X, sep): | |
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] | |
input_ids = [] | |
offset = 0 | |
if ( | |
len(prompt_chunks) > 0 | |
and len(prompt_chunks[0]) > 0 | |
and prompt_chunks[0][0] == tokenizer.bos_token_id | |
): | |
offset = 1 | |
input_ids.append(prompt_chunks[0][0]) | |
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): | |
input_ids.extend(x[offset:]) | |
if return_tensors is not None: | |
if return_tensors == "pt": | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f"Unsupported tensor type: {return_tensors}") | |
return input_ids | |
def is_gemma_tokenizer(tokenizer): | |
return "gemma" in tokenizer.__class__.__name__.lower() | |
def get_model_name_from_path(model_path): | |
model_path = model_path.strip("/") | |
model_paths = model_path.split("/") | |
if model_paths[-1].startswith("checkpoint-"): | |
return model_paths[-2] + "_" + model_paths[-1] | |
else: | |
return model_paths[-1] | |
class KeywordsStoppingCriteria(StoppingCriteria): | |
def __init__(self, keywords, tokenizer, input_ids): | |
self.keywords = keywords | |
self.keyword_ids = [] | |
self.max_keyword_len = 0 | |
for keyword in keywords: | |
cur_keyword_ids = tokenizer(keyword).input_ids | |
if ( | |
len(cur_keyword_ids) > 1 | |
and cur_keyword_ids[0] == tokenizer.bos_token_id | |
): | |
cur_keyword_ids = cur_keyword_ids[1:] | |
if len(cur_keyword_ids) > self.max_keyword_len: | |
self.max_keyword_len = len(cur_keyword_ids) | |
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) | |
self.tokenizer = tokenizer | |
self.start_len = input_ids.shape[1] | |
def call_for_batch( | |
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
offset = min(output_ids.shape[1] - | |
self.start_len, self.max_keyword_len) | |
self.keyword_ids = [ | |
keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids | |
] | |
for keyword_id in self.keyword_ids: | |
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): | |
return True | |
outputs = self.tokenizer.batch_decode( | |
output_ids[:, -offset:], skip_special_tokens=True | |
)[0] | |
for keyword in self.keywords: | |
if keyword in outputs: | |
return True | |
return False | |
def __call__( | |
self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs | |
) -> bool: | |
outputs = [] | |
for i in range(output_ids.shape[0]): | |
outputs.append(self.call_for_batch( | |
output_ids[i].unsqueeze(0), scores)) | |
return all(outputs) | |