import gradio as gr import outlines import transformers import torch from threading import Thread pipe = transformers.pipeline("text-generation", "HuggingFaceTB/SmolLM-1.7B-Instruct", torch_dtype=torch.float32) outlines_tokenizer = outlines.models.TransformerTokenizer(pipe.tokenizer) def string_to_acrostic_grammar(s, dash_initial=True): # this will convert a string to a CFG grammar chars = filter(str.isalpha, s.upper()) grammar_rules = [('"- " ' if dash_initial else '') + f'"{char}" /[^-\\r\\n]+/ "\\n"' for char in chars] return "?start: " + " ".join(grammar_rules) def is_this_prompt_a_list(prompt): # this will check if the prompt is a list # ask the model if the prompt is a list, by constraining the generation to yes or no about a question whether the prompt is a list question = f'You are trying to understand the desired format of output for a prompt, whether it will be a list or a story. The prompt:\n```{prompt}```\n\nIs this prompt asking for short phrases in a list, or long sentences in a story?' grammar = '?start: ("list" | "story")' cfg_logits_processor = outlines.processors.CFGLogitsProcessor(grammar, outlines_tokenizer) output = pipe([{"role": "user", "content": question}, {"role": "assistant", "content": "The output to this prompt is a "}], logits_processor=transformers.LogitsProcessorList([cfg_logits_processor]), max_new_tokens=10,) response = output[0]['generated_text'][-1]['content'].split()[-1] # the last word is the answer print("is this prompt a list?", response) return response == "list" def respond( message, history: list[tuple[str, str]], system_message, acrostic, max_tokens, temperature, top_p, ): print({"message": message, "history": history, "system_message": system_message, "acrostic": acrostic, "max_tokens": max_tokens, "temperature": temperature, "top_p": top_p}) # this will generate a response to the message prompt = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" grammar = string_to_acrostic_grammar(acrostic, dash_initial=is_this_prompt_a_list(prompt)) acrostic_logits_processor = outlines.processors.CFGLogitsProcessor(grammar, outlines_tokenizer) streamer = transformers.TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, decode_kwargs={"skip_special_tokens": True}) current_inputs = [] # take the current inputs, and for every item in the history (which is a list of [x,y], add it to the current inputs like so: {"role": "user", "content": x), {"role": "assistant", "content": y} for x, y in history: current_inputs.append({"role": "user", "content": x}) current_inputs.append({"role": "assistant", "content": y}) # add the current inputs to the inputs inputs = current_inputs + [{"role": "user", "content": prompt}] generation_kwargs = dict(text_inputs=inputs, logits_processor=transformers.LogitsProcessorList([acrostic_logits_processor]), streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True) thread = Thread(target=pipe, kwargs=generation_kwargs) thread.start() # this will generate a response to the message # TODO: figure out why skip special tokens doesn't skip special tokens special_tokens = set([str(v) for v in pipe.tokenizer.special_tokens_map.values()]) response = "" for new_text in streamer: if new_text not in special_tokens: response += new_text yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Textbox(value="I love you", label="acrostic"), gr.Slider(minimum=1, maximum=8192, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.2, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()