File size: 10,514 Bytes
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d27a1
99bbd30
 
 
 
 
43d27a1
99bbd30
 
43d27a1
99bbd30
 
 
 
 
 
 
 
 
 
 
09d5092
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
18f0bbe
99bbd30
 
43d27a1
 
 
 
 
 
 
 
99bbd30
43d27a1
99bbd30
 
 
43d27a1
99bbd30
 
 
 
 
 
 
 
 
 
 
43d27a1
99bbd30
 
 
 
43d27a1
 
99bbd30
 
 
 
 
 
43d27a1
99bbd30
43d27a1
 
 
 
 
99bbd30
 
 
 
 
 
 
43d27a1
 
99bbd30
43d27a1
 
 
 
 
 
 
 
 
 
99bbd30
 
 
 
 
1488c83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9289e32
99bbd30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9289e32
99bbd30
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import logging
from argparse import ArgumentParser
from pathlib import Path

import torch
import torchaudio

from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.utils.features_utils import FeaturesUtils

from datetime import datetime

import traceback

import numpy as np
import os

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True

log = logging.getLogger()


####CUDA_VISIBLE_DEVICES=0 python demo.py --output ./output
####CUDA_VISIBLE_DEVICES=4 nohup python demo.py --output ./output_v2c_neg --start 0 --end 1500 &


@torch.inference_mode()
def v2a_load():
    setup_eval_logging()

    parser = ArgumentParser()
    parser.add_argument('--variant',
                        type=str,
                        #default='large_44k',
                        #default='small_16k',
                        #default='medium_44k',
                        default='small_44k',
                        help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2')
    parser.add_argument('--video', type=Path, help='Path to the video file')
    parser.add_argument('--prompt', type=str, help='Input prompt', default='')
    parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='')
    parser.add_argument('--duration', type=float, default=8.0)
    parser.add_argument('--cfg_strength', type=float, default=4.5)
    parser.add_argument('--num_steps', type=int, default=25)
    
    parser.add_argument('--start', type=int, default=0)
    parser.add_argument('--end', type=int, default=99999999)
    parser.add_argument('--scp', type=str, help='video list', default='/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp')
    parser.add_argument('--calc_energy', type=int, default=1)

    parser.add_argument('--mask_away_clip', action='store_true')

    parser.add_argument('--output', type=Path, help='Output directory', default='./output')
    parser.add_argument('--seed', type=int, help='Random seed', default=42)
    parser.add_argument('--skip_video_composite', action='store_true')
    parser.add_argument('--full_precision', action='store_true')

    args = parser.parse_args()

    if args.variant not in all_model_cfg:
        raise ValueError(f'Unknown model variant: {args.variant}')
    model: ModelConfig = all_model_cfg[args.variant]
    #model.download_if_needed()
    seq_cfg = model.seq_cfg

    #if args.video:
    #    #video_path: Path = Path(args.video).expanduser()
    #    video_path = args.video
    #else:
    #    video_path = None
    #prompt: str = args.prompt
    #negative_prompt: str = args.negative_prompt
    #output_dir: str = args.output.expanduser()
    seed: int = args.seed
    #num_steps: int = args.num_steps
    duration: float = args.duration
    cfg_strength: float = args.cfg_strength
    skip_video_composite: bool = args.skip_video_composite
    #mask_away_clip: bool = args.mask_away_clip

    device = 'cpu'
    if torch.cuda.is_available():
        device = 'cuda'
    elif torch.backends.mps.is_available():
        device = 'mps'
    else:
        log.warning('CUDA/MPS are not available, running on CPU')
    print("full_precision", args.full_precision)
    dtype = torch.float32 if args.full_precision else torch.bfloat16

    #output_dir.mkdir(parents=True, exist_ok=True)

    # load a pretrained model
    net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
    ####model.model_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output/exp_1/exp_1_shadow.pth"
    model.model_path = "MMAudio" / model.model_path
    print("model.model_path", model.model_path)
    net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
    log.info(f'Loaded weights from {model.model_path}')

    # misc setup
    rng = torch.Generator(device=device)
    rng.manual_seed(seed)
    #fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

    model.vae_path = "MMAudio" / model.vae_path
    model.synchformer_ckpt = "MMAudio" / model.synchformer_ckpt
    print("model.vae_path", model.vae_path)
    print("model.synchformer_ckpt", model.synchformer_ckpt)
    print("model.bigvgan_16k_path", model.bigvgan_16k_path)
    feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
                                  synchformer_ckpt=model.synchformer_ckpt,
                                  enable_conditions=True,
                                  mode=model.mode,
                                  bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
                                  need_vae_encoder=False)
    feature_utils = feature_utils.to(device, dtype).eval()
    return net, seq_cfg, rng, feature_utils, args


@torch.inference_mode()
def v2a_infer(output_dir, video_path, prompt, num_steps, loaded):
    net, seq_cfg, rng, feature_utils, args = loaded
    negative_prompt = ""
    duration = args.duration
    cfg_strength = args.cfg_strength
    skip_video_composite = args.skip_video_composite
    mask_away_clip = args.mask_away_clip
    fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
    
    ####test_scp = "/ailab-train/speech/zhanghaomin/animation_dataset_v2a/test.scp"
    #test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp"
    #test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
    test_scp = args.scp
    
    if video_path is None:
        lines = []
        with open(test_scp, "r") as fr:
            lines += fr.readlines()
        #with open(test_scp2, "r") as fr:
        #    lines += fr.readlines()
        tests = []
        for line in lines[args.start: args.end]:
            ####video_path, prompt = line.strip().split("\t")
            ####prompt = "the sound of " + prompt
            ####negative_prompt = ""
            video_path, _, audio_path = line.strip().split("\t")
            ####video_path = "/ailab-train/speech/zhanghaomin/datas/v2cdata/DragonII/DragonII_videos/Gobber/0725.mp4"
            prompt = ""
            #negative_prompt = "speech, voice, talking, speaking"
            negative_prompt = ""
            tests.append([video_path, prompt, negative_prompt, audio_path])
    else:
        tests = [[video_path, prompt, negative_prompt, ""]]
    
    print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "start")
    for video_path, prompt, negative_prompt, audio_path in tests:
        if video_path is not None:
            video_path = Path(video_path).expanduser()
            log.info(f'Using video {video_path}')
            try:
                video_info = load_video(video_path, args.duration)
            except:
                print("Error load_video", video_path)
                traceback.print_exc()
                continue
            clip_frames = video_info.clip_frames
            sync_frames = video_info.sync_frames
            duration = video_info.duration_sec
            if mask_away_clip:
                clip_frames = None
            else:
                clip_frames = clip_frames.unsqueeze(0)
            sync_frames = sync_frames.unsqueeze(0)
        else:
            log.info('No video provided -- text-to-audio mode')
            clip_frames = sync_frames = None

        seq_cfg.duration = duration
        net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

        log.info(f'Prompt: {prompt}')
        log.info(f'Negative prompt: {negative_prompt}')

        audios = generate(clip_frames,
                          sync_frames, [prompt],
                          negative_text=[negative_prompt],
                          feature_utils=feature_utils,
                          net=net,
                          fm=fm,
                          rng=rng,
                          cfg_strength=cfg_strength)
        audio = audios.float().cpu()[0]
        if video_path is not None:
            ####save_path = output_dir / f'{video_path.stem}.flac'
            save_path = str(output_dir) + "/" + str(video_path).replace("/", "__").strip(".") + ".flac"
        else:
            safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '')
            save_path = output_dir / f'{safe_filename}.flac'
        torchaudio.save(save_path, audio, seq_cfg.sampling_rate)
        
        #### calculate energy
        if args.calc_energy:
            waveform_v2a, sr_v2a = torchaudio.load(save_path)
            duration_v2a = waveform_v2a.shape[-1] / sr_v2a

            if os.path.exists(audio_path):
                waveform, sr = torchaudio.load(audio_path)
                duration = waveform.shape[-1] / sr
                if duration_v2a >= duration:
                    waveform_v2a = waveform_v2a[:, :int(sr_v2a*duration)]
                else:
                    waveform_v2a = torch.cat([waveform_v2a, torch.zeros([waveform_v2a.shape[0], int(sr_v2a*duration)-waveform_v2a.shape[1]])], dim=1)
                duration_v2a = duration
            
            energy_v2a = []
            for i in range(int(duration_v2a/(256/24000))):
                energy_v2a.append(waveform_v2a[0,int(i*sr_v2a*(256/24000)):int((i+1)*sr_v2a*(256/24000))].abs().mean())
            energy_v2a = np.array(energy_v2a)
            energy_v2a = energy_v2a / max(energy_v2a)
            #print(len(energy_v2a), max(energy_v2a), min(energy_v2a), energy_v2a.mean())
            np.savez(save_path+".npz", energy_v2a)

        log.info(f'Audio saved to {save_path}')
        if video_path is not None and not skip_video_composite:
            ####video_save_path = output_dir / f'{video_path.stem}.mp4'
            video_save_path = str(output_dir) + "/" + str(video_path).replace("/", "__").strip(".") + ".mp4"
            make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
            log.info(f'Video saved to {video_save_path}')

        log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30))
    print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "end")


if __name__ == '__main__':
    main()