Spaces:
Running
Running
File size: 10,514 Bytes
99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 09d5092 99bbd30 18f0bbe 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 43d27a1 99bbd30 1488c83 99bbd30 9289e32 99bbd30 9289e32 99bbd30 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.utils.features_utils import FeaturesUtils
from datetime import datetime
import traceback
import numpy as np
import os
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
log = logging.getLogger()
####CUDA_VISIBLE_DEVICES=0 python demo.py --output ./output
####CUDA_VISIBLE_DEVICES=4 nohup python demo.py --output ./output_v2c_neg --start 0 --end 1500 &
@torch.inference_mode()
def v2a_load():
setup_eval_logging()
parser = ArgumentParser()
parser.add_argument('--variant',
type=str,
#default='large_44k',
#default='small_16k',
#default='medium_44k',
default='small_44k',
help='small_16k, small_44k, medium_44k, large_44k, large_44k_v2')
parser.add_argument('--video', type=Path, help='Path to the video file')
parser.add_argument('--prompt', type=str, help='Input prompt', default='')
parser.add_argument('--negative_prompt', type=str, help='Negative prompt', default='')
parser.add_argument('--duration', type=float, default=8.0)
parser.add_argument('--cfg_strength', type=float, default=4.5)
parser.add_argument('--num_steps', type=int, default=25)
parser.add_argument('--start', type=int, default=0)
parser.add_argument('--end', type=int, default=99999999)
parser.add_argument('--scp', type=str, help='video list', default='/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp')
parser.add_argument('--calc_energy', type=int, default=1)
parser.add_argument('--mask_away_clip', action='store_true')
parser.add_argument('--output', type=Path, help='Output directory', default='./output')
parser.add_argument('--seed', type=int, help='Random seed', default=42)
parser.add_argument('--skip_video_composite', action='store_true')
parser.add_argument('--full_precision', action='store_true')
args = parser.parse_args()
if args.variant not in all_model_cfg:
raise ValueError(f'Unknown model variant: {args.variant}')
model: ModelConfig = all_model_cfg[args.variant]
#model.download_if_needed()
seq_cfg = model.seq_cfg
#if args.video:
# #video_path: Path = Path(args.video).expanduser()
# video_path = args.video
#else:
# video_path = None
#prompt: str = args.prompt
#negative_prompt: str = args.negative_prompt
#output_dir: str = args.output.expanduser()
seed: int = args.seed
#num_steps: int = args.num_steps
duration: float = args.duration
cfg_strength: float = args.cfg_strength
skip_video_composite: bool = args.skip_video_composite
#mask_away_clip: bool = args.mask_away_clip
device = 'cpu'
if torch.cuda.is_available():
device = 'cuda'
elif torch.backends.mps.is_available():
device = 'mps'
else:
log.warning('CUDA/MPS are not available, running on CPU')
print("full_precision", args.full_precision)
dtype = torch.float32 if args.full_precision else torch.bfloat16
#output_dir.mkdir(parents=True, exist_ok=True)
# load a pretrained model
net: MMAudio = get_my_mmaudio(model.model_name).to(device, dtype).eval()
####model.model_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output/exp_1/exp_1_shadow.pth"
model.model_path = "MMAudio" / model.model_path
print("model.model_path", model.model_path)
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
log.info(f'Loaded weights from {model.model_path}')
# misc setup
rng = torch.Generator(device=device)
rng.manual_seed(seed)
#fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
model.vae_path = "MMAudio" / model.vae_path
model.synchformer_ckpt = "MMAudio" / model.synchformer_ckpt
print("model.vae_path", model.vae_path)
print("model.synchformer_ckpt", model.synchformer_ckpt)
print("model.bigvgan_16k_path", model.bigvgan_16k_path)
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
synchformer_ckpt=model.synchformer_ckpt,
enable_conditions=True,
mode=model.mode,
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
need_vae_encoder=False)
feature_utils = feature_utils.to(device, dtype).eval()
return net, seq_cfg, rng, feature_utils, args
@torch.inference_mode()
def v2a_infer(output_dir, video_path, prompt, num_steps, loaded):
net, seq_cfg, rng, feature_utils, args = loaded
negative_prompt = ""
duration = args.duration
cfg_strength = args.cfg_strength
skip_video_composite = args.skip_video_composite
mask_away_clip = args.mask_away_clip
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
####test_scp = "/ailab-train/speech/zhanghaomin/animation_dataset_v2a/test.scp"
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/tmp.scp"
#test_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
test_scp = args.scp
if video_path is None:
lines = []
with open(test_scp, "r") as fr:
lines += fr.readlines()
#with open(test_scp2, "r") as fr:
# lines += fr.readlines()
tests = []
for line in lines[args.start: args.end]:
####video_path, prompt = line.strip().split("\t")
####prompt = "the sound of " + prompt
####negative_prompt = ""
video_path, _, audio_path = line.strip().split("\t")
####video_path = "/ailab-train/speech/zhanghaomin/datas/v2cdata/DragonII/DragonII_videos/Gobber/0725.mp4"
prompt = ""
#negative_prompt = "speech, voice, talking, speaking"
negative_prompt = ""
tests.append([video_path, prompt, negative_prompt, audio_path])
else:
tests = [[video_path, prompt, negative_prompt, ""]]
print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "start")
for video_path, prompt, negative_prompt, audio_path in tests:
if video_path is not None:
video_path = Path(video_path).expanduser()
log.info(f'Using video {video_path}')
try:
video_info = load_video(video_path, args.duration)
except:
print("Error load_video", video_path)
traceback.print_exc()
continue
clip_frames = video_info.clip_frames
sync_frames = video_info.sync_frames
duration = video_info.duration_sec
if mask_away_clip:
clip_frames = None
else:
clip_frames = clip_frames.unsqueeze(0)
sync_frames = sync_frames.unsqueeze(0)
else:
log.info('No video provided -- text-to-audio mode')
clip_frames = sync_frames = None
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
log.info(f'Prompt: {prompt}')
log.info(f'Negative prompt: {negative_prompt}')
audios = generate(clip_frames,
sync_frames, [prompt],
negative_text=[negative_prompt],
feature_utils=feature_utils,
net=net,
fm=fm,
rng=rng,
cfg_strength=cfg_strength)
audio = audios.float().cpu()[0]
if video_path is not None:
####save_path = output_dir / f'{video_path.stem}.flac'
save_path = str(output_dir) + "/" + str(video_path).replace("/", "__").strip(".") + ".flac"
else:
safe_filename = prompt.replace(' ', '_').replace('/', '_').replace('.', '')
save_path = output_dir / f'{safe_filename}.flac'
torchaudio.save(save_path, audio, seq_cfg.sampling_rate)
#### calculate energy
if args.calc_energy:
waveform_v2a, sr_v2a = torchaudio.load(save_path)
duration_v2a = waveform_v2a.shape[-1] / sr_v2a
if os.path.exists(audio_path):
waveform, sr = torchaudio.load(audio_path)
duration = waveform.shape[-1] / sr
if duration_v2a >= duration:
waveform_v2a = waveform_v2a[:, :int(sr_v2a*duration)]
else:
waveform_v2a = torch.cat([waveform_v2a, torch.zeros([waveform_v2a.shape[0], int(sr_v2a*duration)-waveform_v2a.shape[1]])], dim=1)
duration_v2a = duration
energy_v2a = []
for i in range(int(duration_v2a/(256/24000))):
energy_v2a.append(waveform_v2a[0,int(i*sr_v2a*(256/24000)):int((i+1)*sr_v2a*(256/24000))].abs().mean())
energy_v2a = np.array(energy_v2a)
energy_v2a = energy_v2a / max(energy_v2a)
#print(len(energy_v2a), max(energy_v2a), min(energy_v2a), energy_v2a.mean())
np.savez(save_path+".npz", energy_v2a)
log.info(f'Audio saved to {save_path}')
if video_path is not None and not skip_video_composite:
####video_save_path = output_dir / f'{video_path.stem}.mp4'
video_save_path = str(output_dir) + "/" + str(video_path).replace("/", "__").strip(".") + ".mp4"
make_video(video_info, video_save_path, audio, sampling_rate=seq_cfg.sampling_rate)
log.info(f'Video saved to {video_save_path}')
log.info('Memory usage: %.2f GB', torch.cuda.max_memory_allocated() / (2**30))
print(datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S.%f")[:-3], "end")
if __name__ == '__main__':
main()
|