lshzhm's picture
init commit
99bbd30 verified
raw
history blame
6.36 kB
import os
import sys
sys.path.append(os.getcwd())
import json
from concurrent.futures import ProcessPoolExecutor
from importlib.resources import files
from pathlib import Path
from tqdm import tqdm
import soundfile as sf
from datasets.arrow_writer import ArrowWriter
import numpy as np
import torch
import torchaudio
def deal_with_audio_dir(audio_dir):
sub_result, durations = [], []
vocab_set = set()
audio_lists = list(audio_dir.rglob("*.wav"))
for line in audio_lists:
text_path = line.with_suffix(".normalized.txt")
text = open(text_path, "r").read().strip()
duration = sf.info(line).duration
if duration < 0.4 or duration > 30:
continue
sub_result.append({"audio_path": str(line), "text": text, "duration": duration})
durations.append(duration)
vocab_set.update(list(text))
return sub_result, durations, vocab_set
def main():
result = []
duration_list = []
text_vocab_set = set()
# process raw data
#executor = ProcessPoolExecutor(max_workers=max_workers)
#futures = []
#
#for subset in tqdm(SUB_SET):
# dataset_path = Path(os.path.join(dataset_dir, subset))
# [
# futures.append(executor.submit(deal_with_audio_dir, audio_dir))
# for audio_dir in dataset_path.iterdir()
# if audio_dir.is_dir()
# ]
#for future in tqdm(futures, total=len(futures)):
# sub_result, durations, vocab_set = future.result()
# result.extend(sub_result)
# duration_list.extend(durations)
# text_vocab_set.update(vocab_set)
#executor.shutdown()
train_scp = "/ailab-train/speech/zhanghaomin/datas/v2cdata/test.scp"
v2a_path = "/ailab-train/speech/zhanghaomin/codes3/MMAudio-main/output_v2c_s44/"
#v2a_path = "/ailab-train/speech/zhanghaomin/codes3/v2a_v2cdata/"
with open(train_scp, "r") as fr:
for line in fr.readlines():
video, txt, audio = line.strip().split("\t")
####v2a_audio = v2a_path + video.replace("/", "__") + ".flac"
v2a_audio = v2a_path + video.replace("/", "__")[:-4] + ".wav"
if not os.path.exists(video) or not os.path.exists(audio) or not os.path.exists(v2a_audio):
print(video, audio, v2a_audio)
continue
waveform, sr = torchaudio.load(audio)
duration = waveform.shape[-1] / sr
waveform_v2a, sr_v2a = torchaudio.load(v2a_audio)
duration_v2a = waveform_v2a.shape[-1] / sr_v2a
if duration_v2a >= duration:
waveform_v2a = waveform_v2a[:, :int(sr_v2a*duration)]
else:
waveform_v2a = torch.cat([waveform_v2a, torch.zeros([waveform_v2a.shape[0], int(sr_v2a*duration)-waveform_v2a.shape[1]])], dim=1)
duration_v2a = duration
energy_v2a = []
for i in range(int(duration_v2a/(256/24000))):
energy_v2a.append(waveform_v2a[0,int(i*sr_v2a*(256/24000)):int((i+1)*sr_v2a*(256/24000))].abs().mean())
energy_v2a = np.array(energy_v2a)
energy_v2a = energy_v2a / max(energy_v2a)
#print(len(energy_v2a), max(energy_v2a), min(energy_v2a), energy_v2a.mean())
np.savez(v2a_audio+".npz", energy_v2a)
energy = []
for i in range(int(duration/(256/24000))):
energy.append(waveform[0,int(i*sr*(256/24000)):int((i+1)*sr*(256/24000))].abs().mean())
energy = np.array(energy)
energy = energy / max(energy)
#print(len(energy), max(energy), min(energy), energy.mean())
np.savez(audio+".npz", energy)
d = {}
d["audio_path"] = audio
d["text"] = txt
d["duration"] = duration
d["energy"] = v2a_audio+".npz"
result.append(d)
duration_list.append(duration)
text_vocab_set.update(list(txt))
print(len(result), result[:2]) # 354218 [{'audio_path': '/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS/train-clean-100/7635/105409/7635_105409_000088_000000.wav', 'text': '"There is no \'but.\' I said, do you remember?"', 'duration': 2.31}, {'audio_path': '/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS/train-clean-100/7635/105409/7635_105409_000061_000002.wav', 'text': 'They know it.', 'duration': 0.76}]
print(len(duration_list), duration_list[:2]) # 354218 [2.31, 0.76]
print(len(text_vocab_set)) # 78
# save preprocessed dataset to disk
if not os.path.exists(f"{save_dir}"):
os.makedirs(f"{save_dir}")
print(f"\nSaving to {save_dir} ...")
with ArrowWriter(path=f"{save_dir}/raw.arrow") as writer:
for line in tqdm(result, desc="Writing to raw.arrow ..."):
writer.write(line)
# dup a json separately saving duration in case for DynamicBatchSampler ease
with open(f"{save_dir}/duration.json", "w", encoding="utf-8") as f:
json.dump({"duration": duration_list}, f, ensure_ascii=False)
# vocab map, i.e. tokenizer
with open(f"{save_dir}/vocab.txt", "w") as f:
for vocab in sorted(text_vocab_set):
f.write(vocab + "\n")
print(f"\nFor {dataset_name}, sample count: {len(result)}")
print(f"For {dataset_name}, vocab size is: {len(text_vocab_set)}")
print(f"For {dataset_name}, total {sum(duration_list)/3600:.2f} hours")
if __name__ == "__main__":
max_workers = 36
tokenizer = "char" # "pinyin" | "char"
#SUB_SET = ["train-clean-100", "train-clean-360", "train-other-500"]
#dataset_dir = "/ailab-train/speech/zhanghaomin/datas/libritts/LibriTTS"
#dataset_name = f"LibriTTS_{'_'.join(SUB_SET)}_{tokenizer}".replace("train-clean-", "").replace("train-other-", "")
dataset_name = "v2c_s44_test_char"
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
main()
# For LibriTTS_100_360_500_char, sample count: 354218
# For LibriTTS_100_360_500_char, vocab size is: 78
# For LibriTTS_100_360_500_char, total 554.09 hours