fut_gradio / app.py
mintaeng's picture
Update app.py
e99b871 verified
raw
history blame
2.17 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
title = "πŸ€–AI ChatBot"
description = "Building open-domain chatbots is a challenging area for machine learning research."
examples = [["FA μ„œλΉ„μŠ€λŠ” μ–΄λ–€ μ„œλΉ„μŠ€μΈκ°€μš”?"], ["ν’‹μ‚΄ κ²½κΈ°μž₯ κ·œκ²©μ€ μ–΄λ–»κ²Œ λ˜λ‚˜μš”?"], ["ν’‹μ‚΄ν™”λŠ” μ–΄λ–€κ±Έ μ‹ μ–΄μ•Ό ν•˜λ‚˜μš”?"]]
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
title=title,
description=description,
examples=examples,
theme='ParityError/Anime',
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()