import gradio as gr from huggingface_hub import InferenceClient from transformers import AutoModelForCausalLM, AutoTokenizer import torch title = "πŸ€–AI ChatBot" description = "Building open-domain chatbots is a challenging area for machine learning research." examples = [["FA μ„œλΉ„μŠ€λŠ” μ–΄λ–€ μ„œλΉ„μŠ€μΈκ°€μš”?"], ["ν’‹μ‚΄ κ²½κΈ°μž₯ κ·œκ²©μ€ μ–΄λ–»κ²Œ λ˜λ‚˜μš”?"], ["ν’‹μ‚΄ν™”λŠ” μ–΄λ–€κ±Έ μ‹ μ–΄μ•Ό ν•˜λ‚˜μš”?"]] """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, title=title, description=description, examples=examples, theme='ParityError/Anime', additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()