import os import sys import math import numpy as np import torch import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from PIL import Image import gradio as gr from transformers import AutoModel, AutoTokenizer # Constants IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) # Configuration MODEL_NAME = "OpenGVLab/InternVL2_5-8B" # Smaller model for faster loading IMAGE_SIZE = 448 # Set up environment variables os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" # Utility functions for image processing def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images # Function to split model across GPUs def split_model(model_name): device_map = {} world_size = torch.cuda.device_count() if world_size <= 1: return "auto" num_layers = { 'InternVL2_5-1B': 24, 'InternVL2_5-2B': 24, 'InternVL2_5-4B': 36, 'InternVL2_5-8B': 32, 'InternVL2_5-26B': 48, 'InternVL2_5-38B': 64, 'InternVL2_5-78B': 80 }[model_name] # Since the first GPU will be used for ViT, treat it as half a GPU. num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) num_layers_per_gpu = [num_layers_per_gpu] * world_size num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) layer_cnt = 0 for i, num_layer in enumerate(num_layers_per_gpu): for j in range(num_layer): device_map[f'language_model.model.layers.{layer_cnt}'] = i layer_cnt += 1 device_map['vision_model'] = 0 device_map['mlp1'] = 0 device_map['language_model.model.tok_embeddings'] = 0 device_map['language_model.model.embed_tokens'] = 0 device_map['language_model.model.rotary_emb'] = 0 device_map['language_model.output'] = 0 device_map['language_model.model.norm'] = 0 device_map['language_model.lm_head'] = 0 device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 return device_map # Model loading function def load_model(): print(f"\n=== Loading {MODEL_NAME} ===") print(f"CUDA available: {torch.cuda.is_available()}") if torch.cuda.is_available(): print(f"GPU count: {torch.cuda.device_count()}") for i in range(torch.cuda.device_count()): print(f"GPU {i}: {torch.cuda.get_device_name(i)}") # Memory info print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB") print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB") # Determine device map device_map = "auto" if torch.cuda.is_available() and torch.cuda.device_count() > 1: model_short_name = MODEL_NAME.split('/')[-1] device_map = split_model(model_short_name) # Load model and tokenizer try: model = AutoModel.from_pretrained( MODEL_NAME, torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, device_map=device_map ) tokenizer = AutoTokenizer.from_pretrained( MODEL_NAME, use_fast=False, trust_remote_code=True ) # Fix for image context token ID - needed to make the model work with images print("Setting image context token ID...") if hasattr(tokenizer, 'encode'): # Get special token ID from tokenizer img_context_token_id = tokenizer.encode("", add_special_tokens=False)[0] model.img_context_token_id = img_context_token_id print(f"Set img_context_token_id to {img_context_token_id}") print(f"✓ Model and tokenizer loaded successfully!") return model, tokenizer except Exception as e: print(f"❌ Error loading model: {e}") import traceback traceback.print_exc() return None, None # Image analysis function - single image def analyze_image(model, tokenizer, image, prompt): try: # Check if image is valid if image is None: return "Please upload an image first." # Process the image processed_images = dynamic_preprocess(image, image_size=IMAGE_SIZE) # Prepare the prompt text_prompt = f"USER: \n{prompt}\nASSISTANT:" # Convert inputs for the model inputs = tokenizer([text_prompt], return_tensors="pt") # Move inputs to the right device if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} # Add image to the inputs inputs["images"] = processed_images # Generate a response with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=512, ) # Decode the outputs generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the assistant's response assistant_response = generated_text.split("ASSISTANT:")[-1].strip() return assistant_response except Exception as e: import traceback error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}" return error_msg # New function for analyzing two images def analyze_two_images(model, tokenizer, image1, image2, prompt): try: # Check if images are valid if image1 is None and image2 is None: return "Please upload at least one image." # Process the images processed_images = [] if image1 is not None: processed_images.extend(dynamic_preprocess(image1, image_size=IMAGE_SIZE)) if image2 is not None: processed_images.extend(dynamic_preprocess(image2, image_size=IMAGE_SIZE)) # Prepare the prompt with two image tokens text_prompt = f"USER: \n{prompt}\nASSISTANT:" # Convert inputs for the model inputs = tokenizer([text_prompt], return_tensors="pt") # Move inputs to the right device if torch.cuda.is_available(): inputs = {k: v.cuda() for k, v in inputs.items()} # Add images to the inputs inputs["images"] = processed_images # Generate a response with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=512, ) # Decode the outputs generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract only the assistant's response assistant_response = generated_text.split("ASSISTANT:")[-1].strip() return assistant_response except Exception as e: import traceback error_msg = f"Error analyzing images: {str(e)}\n{traceback.format_exc()}" return error_msg # Main function def main(): # Load the model model, tokenizer = load_model() if model is None: # Create an error interface if model loading failed demo = gr.Interface( fn=lambda x: "Model loading failed. Please check the logs for details.", inputs=gr.Textbox(), outputs=gr.Textbox(), title="InternVL2.5 Dual Image Analyzer - Error", description="The model failed to load. Please check the logs for more information." ) return demo # Predefined prompts for analysis prompts = [ "Describe these images in detail.", "What can you tell me about these images?", "Is there any text in these images? If so, can you read it?", "Compare and contrast these two images.", "What are the main subjects in these images?", "What emotions or feelings do these images convey?", "Describe the composition and visual elements of these images.", "Summarize what you see in these images in one paragraph." ] # Create the interface demo = gr.Interface( fn=lambda img1, img2, prompt: analyze_two_images(model, tokenizer, img1, img2, prompt), inputs=[ gr.Image(type="pil", label="Upload First Image"), gr.Image(type="pil", label="Upload Second Image"), gr.Dropdown(choices=prompts, value=prompts[0], label="Select a prompt or write your own below", allow_custom_value=True) ], outputs=gr.Textbox(label="Analysis Results", lines=15), title="InternVL2.5 Dual Image Analyzer", description="Upload two images and ask the InternVL2.5 model to analyze them together.", examples=[ ["example_images/example1.jpg", "example_images/example2.jpg", "Compare and contrast these two images."], ["example_images/example1.jpg", "example_images/example2.jpg", "What can you tell me about these images?"] ], theme=gr.themes.Soft(), allow_flagging="never" ) return demo # Run the application if __name__ == "__main__": try: # Check for GPU if not torch.cuda.is_available(): print("WARNING: CUDA is not available. The model requires a GPU to function properly.") # Create and launch the interface demo = main() demo.launch(server_name="0.0.0.0") except Exception as e: print(f"Error starting the application: {e}") import traceback traceback.print_exc()