File size: 11,583 Bytes
d9b3bd5
 
 
 
26b237e
336bb36
d9b3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ba1ac8
9dd8cd9
d9b3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336bb36
ba89e47
336bb36
 
 
 
d9b3bd5
336bb36
 
d9b3bd5
cdf4f83
d9b3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d64a45c
d9b3bd5
 
 
 
 
 
 
 
 
 
 
336bb36
d9b3bd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import argparse
import gradio as gr
import os
from PIL import Image
import spaces
import copy

from kimi_vl.serve.frontend import reload_javascript
from kimi_vl.serve.utils import (
    configure_logger,
    pil_to_base64,
    parse_ref_bbox,
    strip_stop_words,
    is_variable_assigned,
)
from kimi_vl.serve.gradio_utils import (
    cancel_outputing,
    delete_last_conversation,
    reset_state,
    reset_textbox,
    transfer_input,
    wrap_gen_fn,
)
from kimi_vl.serve.chat_utils import (
    generate_prompt_with_history,
    convert_conversation_to_prompts,
    to_gradio_chatbot,
    to_gradio_history,
)
from kimi_vl.serve.inference import kimi_vl_generate, load_model
from kimi_vl.serve.examples import get_examples

TITLE = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with Kimi-VL-A3B-Thinking🤔 </h1>"""
DESCRIPTION_TOP = """<a href="https://github.com/MoonshotAI/Kimi-VL" target="_blank">Kimi-VL-A3B-Thinking</a> is a multi-modal LLM that can understand text and images, and generate text with thinking processes. For non-thinking version, please try [Kimi-VL-A3B](https://huggingface.co/spaces/moonshotai/Kimi-VL-A3B)."""
DESCRIPTION = """"""
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DEPLOY_MODELS = dict()
logger = configure_logger()


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default="Kimi-VL-A3B-Thinking")
    parser.add_argument(
        "--local-path",
        type=str,
        default="",
        help="huggingface ckpt, optional",
    )
    parser.add_argument("--ip", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    return parser.parse_args()


def fetch_model(model_name: str):
    global args, DEPLOY_MODELS

    if args.local_path:
        model_path = args.local_path
    else:
        model_path = f"moonshotai/{args.model}"

    if model_name in DEPLOY_MODELS:
        model_info = DEPLOY_MODELS[model_name]
        print(f"{model_name} has been loaded.")
    else:
        print(f"{model_name} is loading...")
        DEPLOY_MODELS[model_name] = load_model(model_path)
        print(f"Load {model_name} successfully...")
        model_info = DEPLOY_MODELS[model_name]

    return model_info


def preview_images(files) -> list[str]:
    if files is None:
        return []

    image_paths = []
    for file in files:
        image_paths.append(file.name)
    return image_paths


def get_prompt(conversation) -> str:
    """
    Get the prompt for the conversation.
    """
    system_prompt = conversation.system_template.format(system_message=conversation.system_message)
    return system_prompt

def highlight_thinking(msg: str) -> str:
    msg = copy.deepcopy(msg)
    if "◁think▷" in msg:
        msg = msg.replace("◁think▷", "<b style='color:blue;'>🤔Thinking...</b>\n")
    if "◁/think▷" in msg:
        msg = msg.replace("◁/think▷", "\n<b style='color:purple;'>💡Summary</b>\n")

    return msg
    
@wrap_gen_fn
@spaces.GPU(duration=180)
def predict(
    text,
    images,
    chatbot,
    history,
    top_p,
    temperature,
    max_length_tokens,
    max_context_length_tokens,
    chunk_size: int = 512,
):
    """
    Predict the response for the input text and images.
    Args:
        text (str): The input text.
        images (list[PIL.Image.Image]): The input images.
        chatbot (list): The chatbot.
        history (list): The history.
        top_p (float): The top-p value.
        temperature (float): The temperature value.
        repetition_penalty (float): The repetition penalty value.
        max_length_tokens (int): The max length tokens.
        max_context_length_tokens (int): The max context length tokens.
        chunk_size (int): The chunk size.
    """
    print("running the prediction function")
    try:
        model, processor = fetch_model(args.model)

        if text == "":
            yield chatbot, history, "Empty context."
            return
    except KeyError:
        yield [[text, "No Model Found"]], [], "No Model Found"
        return

    if images is None:
        images = []

    # load images
    pil_images = []
    for img_or_file in images:
        try:
            # load as pil image
            if isinstance(images, Image.Image):
                pil_images.append(img_or_file)
            else:
                image = Image.open(img_or_file.name).convert("RGB")
                pil_images.append(image)
        except Exception as e:
            print(f"Error loading image: {e}")

    # generate prompt
    conversation = generate_prompt_with_history(
        text,
        pil_images,
        history,
        processor,
        max_length=max_context_length_tokens,
    )
    all_conv, last_image = convert_conversation_to_prompts(conversation)
    stop_words = conversation.stop_str
    gradio_chatbot_output = to_gradio_chatbot(conversation)

    full_response = ""
    for x in kimi_vl_generate(
            conversations=all_conv,
            model=model,
            processor=processor,
            stop_words=stop_words,
            max_length=max_length_tokens,
            temperature=temperature,
            top_p=top_p,
        ):
            full_response += x
            response = strip_stop_words(full_response, stop_words)
            conversation.update_last_message(response)
            gradio_chatbot_output[-1][1] = highlight_thinking(response)

            yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."

    if last_image is not None:
        vg_image = parse_ref_bbox(response, last_image)
        if vg_image is not None:
            vg_base64 = pil_to_base64(vg_image, "vg", max_size=800, min_size=400)
            gradio_chatbot_output[-1][1] += vg_base64
            yield gradio_chatbot_output, to_gradio_history(conversation), "Generating..."

    logger.info("flushed result to gradio")

    if is_variable_assigned("x"):
        print(
            f"temperature: {temperature}, "
            f"top_p: {top_p}, "
            f"max_length_tokens: {max_length_tokens}"
        )

    yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"


def retry(
    text,
    images,
    chatbot,
    history,
    top_p,
    temperature,
    max_length_tokens,
    max_context_length_tokens,
    chunk_size: int = 512,
):
    """
    Retry the response for the input text and images.
    """
    if len(history) == 0:
        yield (chatbot, history, "Empty context")
        return

    chatbot.pop()
    history.pop()
    text = history.pop()[-1]
    if type(text) is tuple:
        text, _ = text

    yield from predict(
        text,
        images,
        chatbot,
        history,
        top_p,
        temperature,
        max_length_tokens,
        max_context_length_tokens,
        chunk_size,
    )


def build_demo(args: argparse.Namespace) -> gr.Blocks:
    with gr.Blocks(theme=gr.themes.Soft(), delete_cache=(1800, 1800)) as demo:
        history = gr.State([])
        input_text = gr.State()
        input_images = gr.State()

        with gr.Row():
            gr.HTML(TITLE)
            status_display = gr.Markdown("Success", elem_id="status_display")
        gr.Markdown(DESCRIPTION_TOP)

        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                with gr.Row():
                    chatbot = gr.Chatbot(
                        elem_id="Kimi-VL-A3B-Thinking-chatbot",
                        show_share_button=True,
                        bubble_full_width=False,
                        height=600,
                    )
                with gr.Row():
                    with gr.Column(scale=4):
                        text_box = gr.Textbox(show_label=False, placeholder="Enter text", container=False)
                    with gr.Column(min_width=70):
                        submit_btn = gr.Button("Send")
                    with gr.Column(min_width=70):
                        cancel_btn = gr.Button("Stop")
                with gr.Row():
                    empty_btn = gr.Button("🧹 New Conversation")
                    retry_btn = gr.Button("🔄 Regenerate")
                    del_last_btn = gr.Button("🗑️ Remove Last Turn")

            with gr.Column():
                # add note no more than 2 images once
                gr.Markdown("Note: you can upload no more than 2 images once")
                upload_images = gr.Files(file_types=["image"], show_label=True)
                gallery = gr.Gallery(columns=[3], height="200px", show_label=True)
                upload_images.change(preview_images, inputs=upload_images, outputs=gallery)
                # Parameter Setting Tab for control the generation parameters
                with gr.Tab(label="Parameter Setting"):
                    top_p = gr.Slider(minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p")
                    temperature = gr.Slider(
                        minimum=0, maximum=1.0, value=0.6, step=0.1, interactive=True, label="Temperature"
                    )
                    max_length_tokens = gr.Slider(
                        minimum=512, maximum=8192, value=2048, step=64, interactive=True, label="Max Length Tokens"
                    )
                    max_context_length_tokens = gr.Slider(
                        minimum=512, maximum=8192, value=2048, step=64, interactive=True, label="Max Context Length Tokens"
                    )

                    show_images = gr.HTML(visible=False)

        gr.Examples(
            examples=get_examples(ROOT_DIR),
            inputs=[upload_images, show_images, text_box],
        )
        gr.Markdown()

        input_widgets = [
            input_text,
            input_images,
            chatbot,
            history,
            top_p,
            temperature,
            max_length_tokens,
            max_context_length_tokens,
        ]
        output_widgets = [chatbot, history, status_display]

        transfer_input_args = dict(
            fn=transfer_input,
            inputs=[text_box, upload_images],
            outputs=[input_text, input_images, text_box, upload_images, submit_btn],
            show_progress=True,
        )

        predict_args = dict(fn=predict, inputs=input_widgets, outputs=output_widgets, show_progress=True)
        retry_args = dict(fn=retry, inputs=input_widgets, outputs=output_widgets, show_progress=True)
        reset_args = dict(fn=reset_textbox, inputs=[], outputs=[text_box, status_display])

        predict_events = [
            text_box.submit(**transfer_input_args).then(**predict_args),
            submit_btn.click(**transfer_input_args).then(**predict_args),
        ]

        empty_btn.click(reset_state, outputs=output_widgets, show_progress=True)
        empty_btn.click(**reset_args)
        retry_btn.click(**retry_args)
        del_last_btn.click(delete_last_conversation, [chatbot, history], output_widgets, show_progress=True)
        cancel_btn.click(cancel_outputing, [], [status_display], cancels=predict_events)

    demo.title = "Kimi-VL-A3B-Thinking Chatbot"
    return demo


def main(args: argparse.Namespace):
    demo = build_demo(args)
    reload_javascript()

    # concurrency_count=CONCURRENT_COUNT, max_size=MAX_EVENTS
    favicon_path = os.path.join("kimi_vl/serve/assets/favicon.ico")
    demo.queue().launch(
        favicon_path=favicon_path,
        server_name=args.ip,
        server_port=args.port,
    )


if __name__ == "__main__":
    args = parse_args()
    main(args)