Spaces:
Build error
Build error
""" | |
用于推理 inference/train_mimictalk_on_a_video.py 得到的person-specific模型 | |
""" | |
import os | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# import librosa | |
import random | |
import time | |
import numpy as np | |
import importlib | |
import tqdm | |
import copy | |
import cv2 | |
# common utils | |
from utils.commons.hparams import hparams, set_hparams | |
from utils.commons.tensor_utils import move_to_cuda, convert_to_tensor | |
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint | |
# 3DMM-related utils | |
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel | |
from data_util.face3d_helper import Face3DHelper | |
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image | |
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video | |
from deep_3drecon.secc_renderer import SECC_Renderer | |
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic | |
# Face Parsing | |
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter | |
from data_gen.utils.process_video.extract_segment_imgs import inpaint_torso_job, extract_background | |
# other inference utils | |
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor | |
from inference.infer_utils import smooth_camera_sequence, smooth_features_xd | |
from inference.edit_secc import blink_eye_for_secc, hold_eye_opened_for_secc | |
from inference.real3d_infer import GeneFace2Infer | |
class AdaptGeneFace2Infer(GeneFace2Infer): | |
def __init__(self, audio2secc_dir, head_model_dir, torso_model_dir, device=None, **kwargs): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.device = device | |
self.audio2secc_dir = audio2secc_dir | |
self.head_model_dir = head_model_dir | |
self.torso_model_dir = torso_model_dir | |
self.audio2secc_model = self.load_audio2secc(audio2secc_dir) | |
self.secc2video_model = self.load_secc2video(head_model_dir, torso_model_dir) | |
self.audio2secc_model.to(device).eval() | |
self.secc2video_model.to(device).eval() | |
self.seg_model = MediapipeSegmenter() | |
self.secc_renderer = SECC_Renderer(512) | |
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68') | |
self.mp_face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='mediapipe') | |
# self.camera_selector = KNearestCameraSelector() | |
def load_secc2video(self, head_model_dir, torso_model_dir): | |
if torso_model_dir != '': | |
config_dir = torso_model_dir if os.path.isdir(torso_model_dir) else os.path.dirname(torso_model_dir) | |
set_hparams(f"{config_dir}/config.yaml", print_hparams=False) | |
hparams['htbsr_head_threshold'] = 1.0 | |
self.secc2video_hparams = copy.deepcopy(hparams) | |
ckpt = get_last_checkpoint(torso_model_dir)[0] | |
lora_args = ckpt.get("lora_args", None) | |
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso | |
model = OSAvatarSECC_Img2plane_Torso(self.secc2video_hparams, lora_args=lora_args) | |
load_ckpt(model, f"{torso_model_dir}", model_name='model', strict=True) | |
self.learnable_triplane = nn.Parameter(torch.zeros([1, 3, model.triplane_hid_dim*model.triplane_depth, 256, 256]).float().cuda(), requires_grad=True) | |
load_ckpt(self.learnable_triplane, f"{torso_model_dir}", model_name='learnable_triplane', strict=True) | |
model._last_cano_planes = self.learnable_triplane | |
if head_model_dir != '': | |
print("| Warning: Assigned --torso_ckpt which also contains head, but --head_ckpt is also assigned, skipping the --head_ckpt.") | |
else: | |
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane | |
set_hparams(f"{head_model_dir}/config.yaml", print_hparams=False) | |
ckpt = get_last_checkpoint(head_model_dir)[0] | |
lora_args = ckpt.get("lora_args", None) | |
self.secc2video_hparams = copy.deepcopy(hparams) | |
model = OSAvatarSECC_Img2plane(self.secc2video_hparams, lora_args=lora_args) | |
load_ckpt(model, f"{head_model_dir}", model_name='model', strict=True) | |
self.learnable_triplane = nn.Parameter(torch.zeros([1, 3, model.triplane_hid_dim*model.triplane_depth, 256, 256]).float().cuda(), requires_grad=True) | |
model._last_cano_planes = self.learnable_triplane | |
load_ckpt(model._last_cano_planes, f"{head_model_dir}", model_name='learnable_triplane', strict=True) | |
self.person_ds = ckpt['person_ds'] | |
return model | |
def prepare_batch_from_inp(self, inp): | |
""" | |
:param inp: {'audio_source_name': (str)} | |
:return: a dict that contains the condition feature of NeRF | |
""" | |
sample = {} | |
# Process Driving Motion | |
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']: | |
self.save_wav16k(inp['drv_audio_name']) | |
if self.audio2secc_hparams['audio_type'] == 'hubert': | |
hubert = self.get_hubert(self.wav16k_name) | |
elif self.audio2secc_hparams['audio_type'] == 'mfcc': | |
hubert = self.get_mfcc(self.wav16k_name) / 100 | |
f0 = self.get_f0(self.wav16k_name) | |
if f0.shape[0] > len(hubert): | |
f0 = f0[:len(hubert)] | |
else: | |
num_to_pad = len(hubert) - len(f0) | |
f0 = np.pad(f0, pad_width=((0,num_to_pad), (0,0))) | |
t_x = hubert.shape[0] | |
x_mask = torch.ones([1, t_x]).float() # mask for audio frames | |
y_mask = torch.ones([1, t_x//2]).float() # mask for motion/image frames | |
sample.update({ | |
'hubert': torch.from_numpy(hubert).float().unsqueeze(0).cuda(), | |
'f0': torch.from_numpy(f0).float().reshape([1,-1]).cuda(), | |
'x_mask': x_mask.cuda(), | |
'y_mask': y_mask.cuda(), | |
}) | |
sample['blink'] = torch.zeros([1, t_x, 1]).long().cuda() | |
sample['audio'] = sample['hubert'] | |
sample['eye_amp'] = torch.ones([1, 1]).cuda() * 1.0 | |
elif inp['drv_audio_name'][-4:] in ['.mp4']: | |
drv_motion_coeff_dict = fit_3dmm_for_a_video(inp['drv_audio_name'], save=False) | |
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict) | |
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2 | |
self.drv_motion_coeff_dict = drv_motion_coeff_dict | |
elif inp['drv_audio_name'][-4:] in ['.npy']: | |
drv_motion_coeff_dict = np.load(inp['drv_audio_name'], allow_pickle=True).tolist() | |
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict) | |
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2 | |
self.drv_motion_coeff_dict = drv_motion_coeff_dict | |
# Face Parsing | |
sample['ref_gt_img'] = self.person_ds['gt_img'].cuda() | |
img = self.person_ds['gt_img'].reshape([3, 512, 512]).permute(1, 2, 0) | |
img = (img + 1) * 127.5 | |
img = np.ascontiguousarray(img.int().numpy()).astype(np.uint8) | |
segmap = self.seg_model._cal_seg_map(img) | |
sample['segmap'] = torch.tensor(segmap).float().unsqueeze(0).cuda() | |
head_img = self.seg_model._seg_out_img_with_segmap(img, segmap, mode='head')[0] | |
sample['ref_head_img'] = ((torch.tensor(head_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w] | |
inpaint_torso_img, _, _, _ = inpaint_torso_job(img, segmap) | |
sample['ref_torso_img'] = ((torch.tensor(inpaint_torso_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w] | |
if inp['bg_image_name'] == '': | |
bg_img = extract_background([img], [segmap], 'knn') | |
else: | |
bg_img = cv2.imread(inp['bg_image_name']) | |
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB) | |
bg_img = cv2.resize(bg_img, (512,512)) | |
sample['bg_img'] = ((torch.tensor(bg_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w] | |
# 3DMM, get identity code and camera pose | |
image_name = f"data/raw/val_imgs/{self.person_ds['video_id']}_img.png" | |
os.makedirs(os.path.dirname(image_name), exist_ok=True) | |
cv2.imwrite(image_name, img[:,:,::-1]) | |
coeff_dict = fit_3dmm_for_a_image(image_name, save=False) | |
coeff_dict['id'] = self.person_ds['id'].reshape([1,80]).numpy() | |
assert coeff_dict is not None | |
src_id = torch.tensor(coeff_dict['id']).reshape([1,80]).cuda() | |
src_exp = torch.tensor(coeff_dict['exp']).reshape([1,64]).cuda() | |
src_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda() | |
src_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda() | |
sample['id'] = src_id.repeat([t_x//2,1]) | |
# get the src_kp for torso model | |
sample['src_kp'] = self.person_ds['src_kp'].cuda().reshape([1, 68, 3]).repeat([t_x//2,1,1])[..., :2] # [B, 68, 2] | |
# get camera pose file | |
random.seed(time.time()) | |
if inp['drv_pose_name'] in ['nearest', 'topk']: | |
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler': torch.tensor(coeff_dict['euler']).reshape([1,3]), 'trans': torch.tensor(coeff_dict['trans']).reshape([1,3])}) | |
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics'] | |
camera = np.concatenate([c2w.reshape([1,16]), intrinsics.reshape([1,9])], axis=-1) | |
coeff_names, distance_matrix = self.camera_selector.find_k_nearest(camera, k=100) | |
coeff_names = coeff_names[0] # squeeze | |
if inp['drv_pose_name'] == 'nearest': | |
inp['drv_pose_name'] = coeff_names[0] | |
else: | |
inp['drv_pose_name'] = random.choice(coeff_names) | |
# inp['drv_pose_name'] = coeff_names[0] | |
elif inp['drv_pose_name'] == 'random': | |
inp['drv_pose_name'] = self.camera_selector.random_select() | |
else: | |
inp['drv_pose_name'] = inp['drv_pose_name'] | |
print(f"| To extract pose from {inp['drv_pose_name']}") | |
# extract camera pose | |
if inp['drv_pose_name'] == 'static': | |
sample['euler'] = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda().repeat([t_x//2,1]) # default static pose | |
sample['trans'] = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda().repeat([t_x//2,1]) | |
else: # from file | |
if inp['drv_pose_name'].endswith('.mp4'): | |
# extract coeff from video | |
drv_pose_coeff_dict = fit_3dmm_for_a_video(inp['drv_pose_name'], save=False) | |
else: | |
# load from npy | |
drv_pose_coeff_dict = np.load(inp['drv_pose_name'], allow_pickle=True).tolist() | |
print(f"| Extracted pose from {inp['drv_pose_name']}") | |
eulers = convert_to_tensor(drv_pose_coeff_dict['euler']).reshape([-1,3]).cuda() | |
trans = convert_to_tensor(drv_pose_coeff_dict['trans']).reshape([-1,3]).cuda() | |
len_pose = len(eulers) | |
index_lst = [mirror_index(i, len_pose) for i in range(t_x//2)] | |
sample['euler'] = eulers[index_lst] | |
sample['trans'] = trans[index_lst] | |
# fix the z axis | |
sample['trans'][:, -1] = sample['trans'][0:1, -1].repeat([sample['trans'].shape[0]]) | |
# mapping to the init pose | |
if inp.get("map_to_init_pose", 'False') == 'True': | |
diff_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda() - sample['euler'][0:1] | |
sample['euler'] = sample['euler'] + diff_euler | |
diff_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda() - sample['trans'][0:1] | |
sample['trans'] = sample['trans'] + diff_trans | |
# prepare camera | |
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':sample['euler'].cpu(), 'trans':sample['trans'].cpu()}) | |
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics'] | |
# smooth camera | |
camera_smo_ksize = 7 | |
camera = np.concatenate([c2w.reshape([-1,16]), intrinsics.reshape([-1,9])], axis=-1) | |
camera = smooth_camera_sequence(camera, kernel_size=camera_smo_ksize) # [T, 25] | |
camera = torch.tensor(camera).cuda().float() | |
sample['camera'] = camera | |
return sample | |
def forward_secc2video(self, batch, inp=None): | |
num_frames = len(batch['drv_secc']) | |
camera = batch['camera'] | |
src_kps = batch['src_kp'] | |
drv_kps = batch['drv_kp'] | |
cano_secc_color = batch['cano_secc'] | |
src_secc_color = batch['src_secc'] | |
drv_secc_colors = batch['drv_secc'] | |
ref_img_gt = batch['ref_gt_img'] | |
ref_img_head = batch['ref_head_img'] | |
ref_torso_img = batch['ref_torso_img'] | |
bg_img = batch['bg_img'] | |
segmap = batch['segmap'] | |
# smooth torso drv_kp | |
torso_smo_ksize = 7 | |
drv_kps = smooth_features_xd(drv_kps.reshape([-1, 68*2]), kernel_size=torso_smo_ksize).reshape([-1, 68, 2]) | |
# forward renderer | |
img_raw_lst = [] | |
img_lst = [] | |
depth_img_lst = [] | |
with torch.no_grad(): | |
for i in tqdm.trange(num_frames, desc="MimicTalk is rendering frames"): | |
kp_src = torch.cat([src_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(src_kps.device)],dim=-1) | |
kp_drv = torch.cat([drv_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(drv_kps.device)],dim=-1) | |
cond={'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_colors[i:i+1].cuda(), | |
'ref_torso_img': ref_torso_img, 'bg_img': bg_img, 'segmap': segmap, | |
'kp_s': kp_src, 'kp_d': kp_drv} | |
######################################################################################################## | |
### 相比real3d_infer只修改了这行👇,即cano_triplane来自cache里的learnable_triplane,而不是img预测的plane #### | |
######################################################################################################## | |
gen_output = self.secc2video_model.forward(img=None, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True) | |
img_lst.append(gen_output['image']) | |
img_raw_lst.append(gen_output['image_raw']) | |
depth_img_lst.append(gen_output['image_depth']) | |
# save demo video | |
depth_imgs = torch.cat(depth_img_lst) | |
imgs = torch.cat(img_lst) | |
imgs_raw = torch.cat(img_raw_lst) | |
secc_img = torch.cat([torch.nn.functional.interpolate(drv_secc_colors[i:i+1], (512,512)) for i in range(num_frames)]) | |
if inp['out_mode'] == 'concat_debug': | |
secc_img = secc_img.cpu() | |
secc_img = ((secc_img + 1) * 127.5).permute(0, 2, 3, 1).int().numpy() | |
depth_img = F.interpolate(depth_imgs, (512,512)).cpu() | |
depth_img = depth_img.repeat([1,3,1,1]) | |
depth_img = (depth_img - depth_img.min()) / (depth_img.max() - depth_img.min()) | |
depth_img = depth_img * 2 - 1 | |
depth_img = depth_img.clamp(-1,1) | |
secc_img = secc_img / 127.5 - 1 | |
secc_img = torch.from_numpy(secc_img).permute(0, 3, 1, 2) | |
imgs = torch.cat([ref_img_gt.repeat([imgs.shape[0],1,1,1]).cpu(), secc_img, F.interpolate(imgs_raw, (512,512)).cpu(), depth_img, imgs.cpu()], dim=-1) | |
elif inp['out_mode'] == 'final': | |
imgs = imgs.cpu() | |
elif inp['out_mode'] == 'debug': | |
raise NotImplementedError("to do: save separate videos") | |
imgs = imgs.clamp(-1,1) | |
import imageio | |
import uuid | |
debug_name = f'{uuid.uuid1()}.mp4' | |
out_imgs = ((imgs.permute(0, 2, 3, 1) + 1)/2 * 255).int().cpu().numpy().astype(np.uint8) | |
writer = imageio.get_writer(debug_name, fps=25, format='FFMPEG', codec='h264') | |
for i in tqdm.trange(len(out_imgs), desc="Imageio is saving video"): | |
writer.append_data(out_imgs[i]) | |
writer.close() | |
out_fname = 'infer_out/tmp/' + os.path.basename(inp['drv_pose_name'])[:-4] + '.mp4' if inp['out_name'] == '' else inp['out_name'] | |
try: | |
os.makedirs(os.path.dirname(out_fname), exist_ok=True) | |
except: pass | |
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']: | |
# os.system(f"ffmpeg -i {debug_name} -i {inp['drv_audio_name']} -y -v quiet -shortest {out_fname}") | |
cmd = f"/usr/bin/ffmpeg -i {debug_name} -i {self.wav16k_name} -y -r 25 -ar 16000 -c:v copy -c:a libmp3lame -pix_fmt yuv420p -b:v 2000k -strict experimental -shortest {out_fname}" | |
os.system(cmd) | |
os.system(f"rm {debug_name}") | |
else: | |
ret = os.system(f"ffmpeg -i {debug_name} -i {inp['drv_audio_name']} -map 0:v -map 1:a -y -v quiet -shortest {out_fname}") | |
if ret != 0: # 没有成功从drv_audio_name里面提取到音频, 则直接输出无音频轨道的纯视频 | |
os.system(f"mv {debug_name} {out_fname}") | |
print(f"Saved at {out_fname}") | |
return out_fname | |
if __name__ == '__main__': | |
import argparse, glob, tqdm | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--a2m_ckpt", default='checkpoints/240112_icl_audio2secc_vox2_cmlr') # checkpoints/0727_audio2secc/audio2secc_withlm2d100_randomframe | |
parser.add_argument("--head_ckpt", default='') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage | |
parser.add_argument("--torso_ckpt", default='checkpoints_mimictalk/German_20s') | |
parser.add_argument("--bg_img", default='') # data/raw/val_imgs/bg3.png | |
parser.add_argument("--drv_aud", default='data/raw/examples/80_vs_60_10s.wav') | |
parser.add_argument("--drv_pose", default='data/raw/examples/German_20s.mp4') # nearest | topk | random | static | vid_name | |
parser.add_argument("--drv_style", default='data/raw/examples/angry.mp4') # nearest | topk | random | static | vid_name | |
parser.add_argument("--blink_mode", default='period') # none | period | |
parser.add_argument("--temperature", default=0.3, type=float) # nearest | random | |
parser.add_argument("--denoising_steps", default=20, type=int) # nearest | random | |
parser.add_argument("--cfg_scale", default=1.5, type=float) # nearest | random | |
parser.add_argument("--out_name", default='') # nearest | random | |
parser.add_argument("--out_mode", default='concat_debug') # concat_debug | debug | final | |
parser.add_argument("--hold_eye_opened", default='False') # concat_debug | debug | final | |
parser.add_argument("--map_to_init_pose", default='True') # concat_debug | debug | final | |
parser.add_argument("--seed", default=None, type=int) # random seed, default None to use time.time() | |
args = parser.parse_args() | |
inp = { | |
'a2m_ckpt': args.a2m_ckpt, | |
'head_ckpt': args.head_ckpt, | |
'torso_ckpt': args.torso_ckpt, | |
'bg_image_name': args.bg_img, | |
'drv_audio_name': args.drv_aud, | |
'drv_pose_name': args.drv_pose, | |
'drv_talking_style_name': args.drv_style, | |
'blink_mode': args.blink_mode, | |
'temperature': args.temperature, | |
'denoising_steps': args.denoising_steps, | |
'cfg_scale': args.cfg_scale, | |
'out_name': args.out_name, | |
'out_mode': args.out_mode, | |
'map_to_init_pose': args.map_to_init_pose, | |
'hold_eye_opened': args.hold_eye_opened, | |
'seed': args.seed, | |
} | |
AdaptGeneFace2Infer.example_run(inp) |