Spaces:
Build error
Build error
File size: 35,124 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 |
"""
将One-shot的说话人大模型(os_secc2plane or os_secc2plane_torso)在单一说话人(一张照片或一段视频)上overfit, 实现和GeneFace++类似的效果
"""
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import librosa
import random
import time
import numpy as np
import importlib
import tqdm
import copy
import cv2
import glob
import imageio
# common utils
from utils.commons.hparams import hparams, set_hparams
from utils.commons.tensor_utils import move_to_cuda, convert_to_tensor
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint
# 3DMM-related utils
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel
from data_util.face3d_helper import Face3DHelper
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video
from data_gen.utils.process_video.extract_segment_imgs import decode_segmap_mask_from_image
from deep_3drecon.secc_renderer import SECC_Renderer
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic
from data_gen.runs.binarizer_nerf import get_lip_rect
# Face Parsing
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter
from data_gen.utils.process_video.extract_segment_imgs import inpaint_torso_job, extract_background
# other inference utils
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor
from inference.infer_utils import smooth_camera_sequence, smooth_features_xd
from inference.edit_secc import blink_eye_for_secc, hold_eye_opened_for_secc
from modules.commons.loralib.utils import mark_only_lora_as_trainable
from utils.nn.model_utils import num_params
import lpips
from utils.commons.meters import AvgrageMeter
meter = AvgrageMeter()
from torch.utils.tensorboard import SummaryWriter
class LoRATrainer(nn.Module):
def __init__(self, inp):
super().__init__()
self.inp = inp
self.lora_args = {'lora_mode': inp['lora_mode'], 'lora_r': inp['lora_r']}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
head_model_dir = inp['head_ckpt']
torso_model_dir = inp['torso_ckpt']
model_dir = torso_model_dir if torso_model_dir != '' else head_model_dir
cmd = f"cp {os.path.join(model_dir, 'config.yaml')} {self.inp['work_dir']}"
print(cmd)
os.system(cmd)
with open(os.path.join(self.inp['work_dir'], 'config.yaml'), "a") as f:
f.write(f"\nlora_r: {inp['lora_r']}")
f.write(f"\nlora_mode: {inp['lora_mode']}")
f.write(f"\n")
self.secc2video_model = self.load_secc2video(model_dir)
self.secc2video_model.to(device).eval()
self.seg_model = MediapipeSegmenter()
self.secc_renderer = SECC_Renderer(512)
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68')
self.mp_face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='mediapipe')
# self.camera_selector = KNearestCameraSelector()
self.load_training_data(inp)
def load_secc2video(self, model_dir):
inp = self.inp
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane, OSAvatarSECC_Img2plane_Torso
hp = set_hparams(f"{model_dir}/config.yaml", print_hparams=False, global_hparams=True)
hp['htbsr_head_threshold'] = 1.0
self.neural_rendering_resolution = hp['neural_rendering_resolution']
if 'torso' in hp['task_cls'].lower():
self.torso_mode = True
model = OSAvatarSECC_Img2plane_Torso(hp=hp, lora_args=self.lora_args)
else:
self.torso_mode = False
model = OSAvatarSECC_Img2plane(hp=hp, lora_args=self.lora_args)
mark_only_lora_as_trainable(model, bias='none')
lora_ckpt_path = os.path.join(inp['work_dir'], 'checkpoint.ckpt')
if os.path.exists(lora_ckpt_path):
self.learnable_triplane = nn.Parameter(torch.zeros([1, 3, model.triplane_hid_dim*model.triplane_depth, 256, 256]).float().cuda(), requires_grad=True)
model._last_cano_planes = self.learnable_triplane
load_ckpt(model, lora_ckpt_path, model_name='model', strict=False)
else:
load_ckpt(model, f"{model_dir}", model_name='model', strict=False)
num_params(model)
self.model = model
return model
def load_training_data(self, inp):
video_id = inp['video_id']
if video_id.endswith((".mp4", ".png", ".jpg", ".jpeg")):
# If input video is not GeneFace training videos, convert it into GeneFace convention
video_id_ = video_id
video_id = os.path.basename(video_id)[:-4]
inp['video_id'] = video_id
target_video_path = f'data/raw/videos/{video_id}.mp4'
if not os.path.exists(target_video_path):
print(f"| Copying video to {target_video_path}")
os.makedirs(os.path.dirname(target_video_path), exist_ok=True)
cmd = f"ffmpeg -i {video_id_} -vf fps=25,scale=w=512:h=512 -qmin 1 -q:v 1 -y {target_video_path}"
print(f"| {cmd}")
os.system(cmd)
target_video_path = f'data/raw/videos/{video_id}.mp4'
print(f"| Copy source video into work dir: {self.inp['work_dir']}")
os.system(f"cp {target_video_path} {self.inp['work_dir']}")
# check head_img path
head_img_pattern = f'data/processed/videos/{video_id}/head_imgs/*.png'
head_img_names = sorted(glob.glob(head_img_pattern))
if len(head_img_names) == 0:
# extract head_imgs
head_img_dir = os.path.dirname(head_img_pattern)
print(f"| Pre-extracted head_imgs not found, try to extract and save to {head_img_dir}, this may take a while...")
gt_img_dir = f"data/processed/videos/{video_id}/gt_imgs"
os.makedirs(gt_img_dir, exist_ok=True)
target_video_path = f'data/raw/videos/{video_id}.mp4'
cmd = f"ffmpeg -i {target_video_path} -vf fps=25,scale=w=512:h=512 -qmin 1 -q:v 1 -start_number 0 -y {gt_img_dir}/%08d.jpg"
print(f"| {cmd}")
os.system(cmd)
# extract image, segmap, and background
cmd = f"python data_gen/utils/process_video/extract_segment_imgs.py --ds_name=nerf --vid_dir={target_video_path}"
print(f"| {cmd}")
os.system(cmd)
print("| Head images Extracted!")
num_samples = len(head_img_names)
npy_name = f"data/processed/videos/{video_id}/coeff_fit_mp_for_lora.npy"
if os.path.exists(npy_name):
coeff_dict = np.load(npy_name, allow_pickle=True).tolist()
else:
print(f"| Pre-extracted 3DMM coefficient not found, try to extract and save to {npy_name}, this may take a while...")
coeff_dict = fit_3dmm_for_a_video(f'data/raw/videos/{video_id}.mp4', save=False)
os.makedirs(os.path.dirname(npy_name), exist_ok=True)
np.save(npy_name, coeff_dict)
ids = convert_to_tensor(coeff_dict['id']).reshape([-1,80]).cuda()
exps = convert_to_tensor(coeff_dict['exp']).reshape([-1,64]).cuda()
eulers = convert_to_tensor(coeff_dict['euler']).reshape([-1,3]).cuda()
trans = convert_to_tensor(coeff_dict['trans']).reshape([-1,3]).cuda()
WH = 512 # now we only support 512x512
lm2ds = WH * self.face3d_helper.reconstruct_lm2d(ids, exps, eulers, trans).cpu().numpy()
lip_rects = [get_lip_rect(lm2ds[i], WH, WH) for i in range(len(lm2ds))]
kps = self.face3d_helper.reconstruct_lm2d(ids, exps, eulers, trans).cuda()
kps = (kps-0.5) / 0.5 # rescale to -1~1
kps = torch.cat([kps, torch.zeros([*kps.shape[:-1], 1]).cuda()], dim=-1)
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler': torch.tensor(coeff_dict['euler']).reshape([-1,3]), 'trans': torch.tensor(coeff_dict['trans']).reshape([-1,3])})
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics']
cameras = torch.tensor(np.concatenate([c2w.reshape([-1,16]), intrinsics.reshape([-1,9])], axis=-1)).cuda()
camera_smo_ksize = 7
cameras = smooth_camera_sequence(cameras.cpu().numpy(), kernel_size=camera_smo_ksize) # [T, 25]
cameras = torch.tensor(cameras).cuda()
zero_eulers = eulers * 0
zero_trans = trans * 0
_, cano_secc_color = self.secc_renderer(ids[0:1], exps[0:1]*0, zero_eulers[0:1], zero_trans[0:1])
src_idx = 0
_, src_secc_color = self.secc_renderer(ids[0:1], exps[src_idx:src_idx+1], zero_eulers[0:1], zero_trans[0:1])
drv_secc_colors = [None for _ in range(len(exps))]
drv_head_imgs = [None for _ in range(len(exps))]
drv_torso_imgs = [None for _ in range(len(exps))]
drv_com_imgs = [None for _ in range(len(exps))]
segmaps = [None for _ in range(len(exps))]
img_name = f'data/processed/videos/{video_id}/bg.jpg'
bg_img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
ds = {
'id': ids.cuda().float(),
'exps': exps.cuda().float(),
'eulers': eulers.cuda().float(),
'trans': trans.cuda().float(),
'cano_secc_color': cano_secc_color.cuda().float(),
'src_secc_color': src_secc_color.cuda().float(),
'cameras': cameras.float(),
'video_id': video_id,
'lip_rects': lip_rects,
'head_imgs': drv_head_imgs,
'torso_imgs': drv_torso_imgs,
'com_imgs': drv_com_imgs,
'bg_img': bg_img,
'segmaps': segmaps,
'kps': kps,
}
self.ds = ds
return ds
def training_loop(self, inp):
trainer = self
video_id = self.ds['video_id']
lora_params = [p for k, p in self.secc2video_model.named_parameters() if 'lora_' in k]
self.criterion_lpips = lpips.LPIPS(net='alex',lpips=True).cuda()
self.logger = SummaryWriter(log_dir=inp['work_dir'])
if not hasattr(self, 'learnable_triplane'):
src_idx = 0 # init triplane from the first frame's prediction
self.learnable_triplane = nn.Parameter(torch.zeros([1, 3, self.secc2video_model.triplane_hid_dim*self.secc2video_model.triplane_depth, 256, 256]).float().cuda(), requires_grad=True)
img_name = f'data/processed/videos/{video_id}/head_imgs/{format(src_idx, "08d")}.png'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float().cuda().float() # [3, H, W]
cano_plane = self.secc2video_model.cal_cano_plane(img.unsqueeze(0)) # [1, 3, CD, h, w]
self.learnable_triplane.data = cano_plane.data
self.secc2video_model._last_cano_planes = self.learnable_triplane
if len(lora_params) == 0:
self.optimizer = torch.optim.AdamW([self.learnable_triplane], lr=inp['lr_triplane'], weight_decay=0.01, betas=(0.9,0.98))
else:
self.optimizer = torch.optim.Adam(lora_params, lr=inp['lr'], betas=(0.9,0.98))
self.optimizer.add_param_group({
'params': [self.learnable_triplane],
'lr': inp['lr_triplane'],
'betas': (0.9, 0.98)
})
ids = self.ds['id']
exps = self.ds['exps']
zero_eulers = self.ds['eulers']*0
zero_trans = self.ds['trans']*0
num_updates = inp['max_updates']
batch_size = inp['batch_size'] # 1 for lower gpu mem usage
num_samples = len(self.ds['cameras'])
init_plane = self.learnable_triplane.detach().clone()
if num_samples <= 5:
lambda_reg_triplane = 1.0
elif num_samples <= 250:
lambda_reg_triplane = 0.1
else:
lambda_reg_triplane = 0.
for i_step in tqdm.trange(num_updates+1,desc="training lora..."):
milestone_steps = []
# milestone_steps = [100, 200, 500]
if i_step % 2000 == 0 or i_step in milestone_steps:
trainer.test_loop(inp, step=i_step)
if i_step != 0:
filepath = os.path.join(inp['work_dir'], f"model_ckpt_steps_{i_step}.ckpt")
checkpoint = self.dump_checkpoint(inp)
tmp_path = str(filepath) + ".part"
torch.save(checkpoint, tmp_path, _use_new_zipfile_serialization=False)
os.replace(tmp_path, filepath)
drv_idx = [random.randint(0, num_samples-1) for _ in range(batch_size)]
drv_secc_colors = []
gt_imgs = []
head_imgs = []
segmaps_0 = []
segmaps = []
torso_imgs = []
drv_lip_rects = []
kp_src = []
kp_drv = []
for di in drv_idx:
# 读取target image
if self.torso_mode:
if self.ds['com_imgs'][di] is None:
# img_name = f'data/processed/videos/{video_id}/gt_imgs/{format(di, "08d")}.jpg'
img_name = f'data/processed/videos/{video_id}/com_imgs/{format(di, "08d")}.jpg'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['com_imgs'][di] = img
gt_imgs.append(self.ds['com_imgs'][di])
else:
if self.ds['head_imgs'][di] is None:
img_name = f'data/processed/videos/{video_id}/head_imgs/{format(di, "08d")}.png'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['head_imgs'][di] = img
gt_imgs.append(self.ds['head_imgs'][di])
if self.ds['head_imgs'][di] is None:
img_name = f'data/processed/videos/{video_id}/head_imgs/{format(di, "08d")}.png'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['head_imgs'][di] = img
head_imgs.append(self.ds['head_imgs'][di])
# 使用第一帧的torso作为face v2v的输入
if self.ds['torso_imgs'][0] is None:
img_name = f'data/processed/videos/{video_id}/inpaint_torso_imgs/{format(0, "08d")}.png'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['torso_imgs'][0] = img
torso_imgs.append(self.ds['torso_imgs'][0])
# 所以segmap也用第一帧的了
if self.ds['segmaps'][0] is None:
img_name = f'data/processed/videos/{video_id}/segmaps/{format(0, "08d")}.png'
seg_img = cv2.imread(img_name)[:,:, ::-1]
segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
self.ds['segmaps'][0] = segmap
segmaps_0.append(self.ds['segmaps'][0])
if self.ds['segmaps'][di] is None:
img_name = f'data/processed/videos/{video_id}/segmaps/{format(di, "08d")}.png'
seg_img = cv2.imread(img_name)[:,:, ::-1]
segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
self.ds['segmaps'][di] = segmap
segmaps.append(self.ds['segmaps'][di])
_, secc_color = self.secc_renderer(ids[0:1], exps[di:di+1], zero_eulers[0:1], zero_trans[0:1])
drv_secc_colors.append(secc_color)
drv_lip_rects.append(self.ds['lip_rects'][di])
kp_src.append(self.ds['kps'][0])
kp_drv.append(self.ds['kps'][di])
bg_img = self.ds['bg_img'].unsqueeze(0).repeat([batch_size, 1, 1, 1]).cuda()
ref_torso_imgs = torch.stack(torso_imgs).float().cuda()
kp_src = torch.stack(kp_src).float().cuda()
kp_drv = torch.stack(kp_drv).float().cuda()
segmaps = torch.stack(segmaps).float().cuda()
segmaps_0 = torch.stack(segmaps_0).float().cuda()
tgt_imgs = torch.stack(gt_imgs).float().cuda()
head_imgs = torch.stack(head_imgs).float().cuda()
drv_secc_color = torch.cat(drv_secc_colors)
cano_secc_color = self.ds['cano_secc_color'].repeat([batch_size, 1, 1, 1])
src_secc_color = self.ds['src_secc_color'].repeat([batch_size, 1, 1, 1])
cond = {'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_color,
'ref_torso_img': ref_torso_imgs, 'bg_img': bg_img,
'segmap': segmaps_0, # v2v使用第一帧的torso作为source image来warp
'kp_s': kp_src, 'kp_d': kp_drv}
camera = self.ds['cameras'][drv_idx]
gen_output = self.secc2video_model.forward(img=None, camera=camera, cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True)
pred_imgs = gen_output['image']
pred_imgs_raw = gen_output['image_raw']
losses = {}
loss_weights = {
'v2v_occlusion_reg_l1_loss': 0.001, # loss for face_vid2vid-based torso
'v2v_occlusion_2_reg_l1_loss': 0.001, # loss for face_vid2vid-based torso
'v2v_occlusion_2_weights_entropy_loss': hparams['lam_occlusion_weights_entropy'], # loss for face_vid2vid-based torso
'density_weight_l2_loss': 0.01, # supervised density
'density_weight_entropy_loss': 0.001, # keep the density change sharp
'mse_loss': 1.,
'head_mse_loss': 0.2, # loss on neural rendering low-reso pred_img
'lip_mse_loss': 1.0,
'lpips_loss': 0.5,
'head_lpips_loss': 0.1,
'lip_lpips_loss': 1.0, # make the teeth more clear
'blink_reg_loss': 0.003, # increase it when you find head shake while blinking; decrease it when you find the eye cannot closed.
'triplane_reg_loss': lambda_reg_triplane,
'secc_reg_loss': 0.01, # used to reduce flicking
}
occlusion_reg_l1 = gen_output.get("losses", {}).get('facev2v/occlusion_reg_l1', 0.)
occlusion_2_reg_l1 = gen_output.get("losses", {}).get('facev2v/occlusion_2_reg_l1', 0.)
occlusion_2_weights_entropy = gen_output.get("losses", {}).get('facev2v/occlusion_2_weights_entropy', 0.)
losses['v2v_occlusion_reg_l1_loss'] = occlusion_reg_l1
losses['v2v_occlusion_2_reg_l1_loss'] = occlusion_2_reg_l1
losses['v2v_occlusion_2_weights_entropy_loss'] = occlusion_2_weights_entropy
# Weights Reg loss in torso
neural_rendering_reso = self.neural_rendering_resolution
alphas = gen_output['weights_img'].clamp(1e-5, 1 - 1e-5)
loss_weights_entropy = torch.mean(- alphas * torch.log2(alphas) - (1 - alphas) * torch.log2(1 - alphas))
mv_head_masks = segmaps[:, [1,3,5]].sum(dim=1)
mv_head_masks_raw = F.interpolate(mv_head_masks.unsqueeze(1), size=(neural_rendering_reso,neural_rendering_reso)).squeeze(1)
face_mask = mv_head_masks_raw.bool().unsqueeze(1)
nonface_mask = ~ face_mask
loss_weights_l2_loss = (alphas[nonface_mask]-0).pow(2).mean() + (alphas[face_mask]-1).pow(2).mean()
losses['density_weight_l2_loss'] = loss_weights_l2_loss
losses['density_weight_entropy_loss'] = loss_weights_entropy
mse_loss = (pred_imgs - tgt_imgs).abs().mean()
head_mse_loss = (pred_imgs_raw - F.interpolate(head_imgs, size=(neural_rendering_reso,neural_rendering_reso), mode='bilinear', antialias=True)).abs().mean()
lpips_loss = self.criterion_lpips(pred_imgs, tgt_imgs).mean()
head_lpips_loss = self.criterion_lpips(pred_imgs_raw, F.interpolate(head_imgs, size=(neural_rendering_reso,neural_rendering_reso), mode='bilinear', antialias=True)).mean()
lip_mse_loss = 0
lip_lpips_loss = 0
for i in range(len(drv_idx)):
xmin, xmax, ymin, ymax = drv_lip_rects[i]
lip_tgt_imgs = tgt_imgs[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
lip_pred_imgs = pred_imgs[i:i+1,:, ymin:ymax,xmin:xmax].contiguous()
try:
lip_mse_loss = lip_mse_loss + (lip_pred_imgs - lip_tgt_imgs).abs().mean()
lip_lpips_loss = lip_lpips_loss + self.criterion_lpips(lip_pred_imgs, lip_tgt_imgs).mean()
except: pass
losses['mse_loss'] = mse_loss
losses['head_mse_loss'] = head_mse_loss
losses['lpips_loss'] = lpips_loss
losses['head_lpips_loss'] = head_lpips_loss
losses['lip_mse_loss'] = lip_mse_loss
losses['lip_lpips_loss'] = lip_lpips_loss
# eye blink reg loss
if i_step % 4 == 0:
blink_secc_lst1 = []
blink_secc_lst2 = []
blink_secc_lst3 = []
for i in range(len(drv_secc_color)):
secc = drv_secc_color[i]
blink_percent1 = random.random() * 0.5 # 0~0.5
blink_percent3 = 0.5 + random.random() * 0.5 # 0.5~1.0
blink_percent2 = (blink_percent1 + blink_percent3)/2
try:
out_secc1 = blink_eye_for_secc(secc, blink_percent1).to(secc.device)
out_secc2 = blink_eye_for_secc(secc, blink_percent2).to(secc.device)
out_secc3 = blink_eye_for_secc(secc, blink_percent3).to(secc.device)
except:
print("blink eye for secc failed, use original secc")
out_secc1 = copy.deepcopy(secc)
out_secc2 = copy.deepcopy(secc)
out_secc3 = copy.deepcopy(secc)
blink_secc_lst1.append(out_secc1)
blink_secc_lst2.append(out_secc2)
blink_secc_lst3.append(out_secc3)
src_secc_color1 = torch.stack(blink_secc_lst1)
src_secc_color2 = torch.stack(blink_secc_lst2)
src_secc_color3 = torch.stack(blink_secc_lst3)
blink_cond1 = {'cond_cano': cano_secc_color, 'cond_src': src_secc_color, 'cond_tgt': src_secc_color1}
blink_cond2 = {'cond_cano': cano_secc_color, 'cond_src': src_secc_color, 'cond_tgt': src_secc_color2}
blink_cond3 = {'cond_cano': cano_secc_color, 'cond_src': src_secc_color, 'cond_tgt': src_secc_color3}
blink_secc_plane1 = self.model.cal_secc_plane(blink_cond1)
blink_secc_plane2 = self.model.cal_secc_plane(blink_cond2)
blink_secc_plane3 = self.model.cal_secc_plane(blink_cond3)
interpolate_blink_secc_plane = (blink_secc_plane1 + blink_secc_plane3) / 2
blink_reg_loss = torch.nn.functional.l1_loss(blink_secc_plane2, interpolate_blink_secc_plane)
losses['blink_reg_loss'] = blink_reg_loss
# Triplane Reg loss
triplane_reg_loss = (self.learnable_triplane - init_plane).abs().mean()
losses['triplane_reg_loss'] = triplane_reg_loss
ref_id = self.ds['id'][0:1]
secc_pertube_randn_scale = hparams['secc_pertube_randn_scale']
perturbed_id = ref_id + torch.randn_like(ref_id) * secc_pertube_randn_scale
drv_exp = self.ds['exps'][drv_idx]
perturbed_exp = drv_exp + torch.randn_like(drv_exp) * secc_pertube_randn_scale
zero_euler = torch.zeros([len(drv_idx), 3], device=ref_id.device, dtype=ref_id.dtype)
zero_trans = torch.zeros([len(drv_idx), 3], device=ref_id.device, dtype=ref_id.dtype)
perturbed_secc = self.secc_renderer(perturbed_id, perturbed_exp, zero_euler, zero_trans)[1]
secc_reg_loss = torch.nn.functional.l1_loss(drv_secc_color, perturbed_secc)
losses['secc_reg_loss'] = secc_reg_loss
total_loss = sum([loss_weights[k] * v for k, v in losses.items() if isinstance(v, torch.Tensor) and v.requires_grad])
# Update weights
self.optimizer.zero_grad()
total_loss.backward()
self.learnable_triplane.grad.data = self.learnable_triplane.grad.data * self.learnable_triplane.numel()
self.optimizer.step()
meter.update(total_loss.item())
if i_step % 10 == 0:
log_line = f"Iter {i_step+1}: total_loss={meter.avg} "
for k, v in losses.items():
log_line = log_line + f" {k}={v.item()}, "
self.logger.add_scalar(f"train/{k}", v.item(), i_step)
print(log_line)
meter.reset()
@torch.no_grad()
def test_loop(self, inp, step=''):
self.model.eval()
# coeff_dict = np.load('data/processed/videos/Lieu/coeff_fit_mp_for_lora.npy', allow_pickle=True).tolist()
# drv_exps = torch.tensor(coeff_dict['exp']).cuda().float()
drv_exps = self.ds['exps']
zero_eulers = self.ds['eulers']*0
zero_trans = self.ds['trans']*0
batch_size = 1
num_samples = len(self.ds['cameras'])
video_writer = imageio.get_writer(os.path.join(inp['work_dir'], f'val_step{step}.mp4'), fps=25)
total_iters = min(num_samples, 250)
video_id = inp['video_id']
for i in tqdm.trange(total_iters,desc="testing lora..."):
drv_idx = [i]
drv_secc_colors = []
gt_imgs = []
segmaps = []
torso_imgs = []
drv_lip_rects = []
kp_src = []
kp_drv = []
for di in drv_idx:
# 读取target image
if self.torso_mode:
if self.ds['com_imgs'][di] is None:
img_name = f'data/processed/videos/{video_id}/com_imgs/{format(di, "08d")}.jpg'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['com_imgs'][di] = img
gt_imgs.append(self.ds['com_imgs'][di])
else:
if self.ds['head_imgs'][di] is None:
img_name = f'data/processed/videos/{video_id}/head_imgs/{format(di, "08d")}.png'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['head_imgs'][di] = img
gt_imgs.append(self.ds['head_imgs'][di])
# 使用第一帧的torso作为face v2v的输入
if self.ds['torso_imgs'][0] is None:
img_name = f'data/processed/videos/{video_id}/inpaint_torso_imgs/{format(0, "08d")}.png'
img = torch.tensor(cv2.imread(img_name)[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
self.ds['torso_imgs'][0] = img
torso_imgs.append(self.ds['torso_imgs'][0])
# 所以segmap也用第一帧的了
if self.ds['segmaps'][0] is None:
img_name = f'data/processed/videos/{video_id}/segmaps/{format(0, "08d")}.png'
seg_img = cv2.imread(img_name)[:,:, ::-1]
segmap = torch.from_numpy(decode_segmap_mask_from_image(seg_img)) # [6, H, W]
self.ds['segmaps'][0] = segmap
segmaps.append(self.ds['segmaps'][0])
drv_lip_rects.append(self.ds['lip_rects'][di])
kp_src.append(self.ds['kps'][0])
kp_drv.append(self.ds['kps'][di])
bg_img = self.ds['bg_img'].unsqueeze(0).repeat([batch_size, 1, 1, 1]).cuda()
ref_torso_imgs = torch.stack(torso_imgs).float().cuda()
kp_src = torch.stack(kp_src).float().cuda()
kp_drv = torch.stack(kp_drv).float().cuda()
segmaps = torch.stack(segmaps).float().cuda()
tgt_imgs = torch.stack(gt_imgs).float().cuda()
for di in drv_idx:
_, secc_color = self.secc_renderer(self.ds['id'][0:1], drv_exps[di:di+1], zero_eulers[0:1], zero_trans[0:1])
drv_secc_colors.append(secc_color)
drv_secc_color = torch.cat(drv_secc_colors)
cano_secc_color = self.ds['cano_secc_color'].repeat([batch_size, 1, 1, 1])
src_secc_color = self.ds['src_secc_color'].repeat([batch_size, 1, 1, 1])
cond = {'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_color,
'ref_torso_img': ref_torso_imgs, 'bg_img': bg_img, 'segmap': segmaps,
'kp_s': kp_src, 'kp_d': kp_drv}
camera = self.ds['cameras'][drv_idx]
gen_output = self.secc2video_model.forward(img=None, camera=camera, cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True)
pred_img = gen_output['image']
pred_img = ((pred_img.permute(0, 2, 3, 1) + 1)/2 * 255).int().cpu().numpy().astype(np.uint8)
video_writer.append_data(pred_img[0])
video_writer.close()
self.model.train()
def masked_error_loss(self, img_pred, img_gt, mask, unmasked_weight=0.1, mode='l1'):
# 对raw图像,因为deform的原因背景没法全黑,导致这部分mse过高,我们将其mask掉,只计算人脸部分
masked_weight = 1.0
weight_mask = mask.float() * masked_weight + (~mask).float() * unmasked_weight
if mode == 'l1':
error = (img_pred - img_gt).abs().sum(dim=1) * weight_mask
else:
error = (img_pred - img_gt).pow(2).sum(dim=1) * weight_mask
error.clamp_(0, max(0.5, error.quantile(0.8).item())) # clamp掉较高loss的pixel,避免姿态没对齐的pixel导致的异常值占主导影响训练
loss = error.mean()
return loss
def dilate(self, bin_img, ksize=5, mode='max_pool'):
"""
mode: max_pool or avg_pool
"""
# bin_img, [1, h, w]
pad = (ksize-1)//2
bin_img = F.pad(bin_img, pad=[pad,pad,pad,pad], mode='reflect')
if mode == 'max_pool':
out = F.max_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0)
else:
out = F.avg_pool2d(bin_img, kernel_size=ksize, stride=1, padding=0)
return out
def dilate_mask(self, mask, ksize=21):
mask = self.dilate(mask, ksize=ksize, mode='max_pool')
return mask
def set_unmasked_to_black(self, img, mask):
out_img = img * mask.float() - (~mask).float() # -1 denotes black
return out_img
def dump_checkpoint(self, inp):
checkpoint = {}
# save optimizers
optimizer_states = []
self.optimizers = [self.optimizer]
for i, optimizer in enumerate(self.optimizers):
if optimizer is not None:
state_dict = optimizer.state_dict()
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
optimizer_states.append(state_dict)
checkpoint['optimizer_states'] = optimizer_states
state_dict = {
'model': self.model.state_dict(),
'learnable_triplane': self.model.state_dict()['_last_cano_planes'],
}
del state_dict['model']['_last_cano_planes']
checkpoint['state_dict'] = state_dict
checkpoint['lora_args'] = self.lora_args
person_ds = {}
video_id = inp['video_id']
img_name = f'data/processed/videos/{video_id}/gt_imgs/{format(0, "08d")}.jpg'
gt_img = torch.tensor(cv2.resize(cv2.imread(img_name), (512, 512))[..., ::-1] / 127.5 - 1).permute(2,0,1).float() # [3, H, W]
person_ds['gt_img'] = gt_img.reshape([1, 3, 512, 512])
person_ds['id'] = self.ds['id'].cpu().reshape([1, 80])
person_ds['src_kp'] = self.ds['kps'][0].cpu()
person_ds['video_id'] = inp['video_id']
checkpoint['person_ds'] = person_ds
return checkpoint
if __name__ == '__main__':
import argparse, glob, tqdm
parser = argparse.ArgumentParser()
parser.add_argument("--head_ckpt", default='') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage
# parser.add_argument("--torso_ckpt", default='checkpoints/240210_real3dportrait_orig/secc2plane_torso_orig') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage
parser.add_argument("--torso_ckpt", default='checkpoints/mimictalk_orig/os_secc2plane_torso') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage
parser.add_argument("--video_id", default='data/raw/examples/GER.mp4', help="identity source, we support (1) already processed <video_id> of GeneFace, (2) video path, (3) image path")
parser.add_argument("--work_dir", default=None)
parser.add_argument("--max_updates", default=10000, type=int, help="for video, 2000 is good; for an image, 3~10 is good")
parser.add_argument("--test", action='store_true')
parser.add_argument("--batch_size", default=1, type=int, help="batch size during training, 1 needs 8GB, 2 needs 15GB")
parser.add_argument("--lr", default=0.001)
parser.add_argument("--lr_triplane", default=0.005, help="for video, 0.1; for an image, 0.001; for ablation with_triplane, 0.")
parser.add_argument("--lora_r", default=2, type=int, help="width of lora unit")
parser.add_argument("--lora_mode", default='secc2plane_sr', help='for video, full; for an image, none')
args = parser.parse_args()
inp = {
'head_ckpt': args.head_ckpt,
'torso_ckpt': args.torso_ckpt,
'video_id': args.video_id,
'work_dir': args.work_dir,
'max_updates': args.max_updates,
'batch_size': args.batch_size,
'test': args.test,
'lr': float(args.lr),
'lr_triplane': float(args.lr_triplane),
'lora_mode': args.lora_mode,
'lora_r': args.lora_r,
}
if inp['work_dir'] == None:
video_id = os.path.basename(inp['video_id'])[:-4] if inp['video_id'].endswith((".mp4", ".png", ".jpg", ".jpeg")) else inp['video_id']
inp['work_dir'] = f'checkpoints_mimictalk/{video_id}'
os.makedirs(inp['work_dir'], exist_ok=True)
trainer = LoRATrainer(inp)
if inp['test']:
trainer.test_loop(inp)
else:
trainer.training_loop(inp)
trainer.test_loop(inp)
print(" ") |