Spaces:
Build error
Build error
File size: 8,777 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from .base import OverlapPatchEmbed, Block
from utils.commons.hparams import hparams
from modules.commons.loralib.layers import MergedLoRALinear, LoRALinear, LoRAConv2d
class LowResolutionViT(nn.Module):
"""
This Vit process the output of low resolution image features produced by DeepLabv3
"""
def __init__(self, img_size=64, in_chans=256, lora_args=None):
super().__init__()
# patch_embed
self.patch_embed = OverlapPatchEmbed(img_size=img_size, patch_size=3, stride=2, in_chans=in_chans, embed_dim=1024, lora_args=lora_args)
if hparams.get('img2plane_backbone_scale', 'standard') == 'small':
self.num_blocks = 2
if hparams.get('img2plane_backbone_scale', 'standard') == 'standard':
self.num_blocks = 5
elif hparams['img2plane_backbone_scale'] == 'large':
self.num_blocks = 10
for i in range(1, self.num_blocks+1):
setattr(self, f'block{i}', Block(dim=1024, num_heads=4, mlp_ratio=2, sr_ratio=1, lora_args=lora_args))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor=2)
self.upsampling_bilinear1 = nn.UpsamplingBilinear2d(scale_factor=2.)
self.conv_after_upsample1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1)
self.activation_conv1 = nn.ReLU()
self.upsampling_bilinear2 = nn.UpsamplingBilinear2d(scale_factor=2.)
self.conv_after_upsample2 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
self.activation_conv2 = nn.ReLU()
self.final_conv = nn.Conv2d(in_channels=128, out_channels=96, kernel_size=3, stride=1, padding=1)
if lora_args is not None:
lora_r = self.lora_r = lora_args.get("lora_r", 8)
self.conv_after_upsample1 = LoRAConv2d(256, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
self.conv_after_upsample2 = LoRAConv2d(128, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
self.final_conv = LoRAConv2d(128, 96, kernel_size=3, stride=1, padding=1, r=lora_r)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif hasattr(m, "reset_parameters"):
m.reset_parameters()
def freeze_patch_emb(self):
self.patch_embed.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'} # has pos_embed may be better
def forward(self, x):
"""
x: [B, 256, 64, 64]
return [B, C=96, H=256, W=256]
"""
h, H, W = self.patch_embed(x)
for i in range(1, self.num_blocks+1):
block_i = getattr(self, f'block{i}')
h = block_i(h, H, H) # [B=2, 1024, H*W=1024]
h = h.permute(0, 2, 1) # [B, C, N=H*W]
h = h.view(h.shape[0], h.shape[1], H, W) # [B=2, C=1024, H=32, W=32]
h = self.pixel_shuffle(h) # [B=2, C=256, H=64, W=64]
h = self.upsampling_bilinear1(h) # [B=2, C=256, H=128, W=128]
h = self.conv_after_upsample1(h)
h = self.activation_conv1(h)
h = self.upsampling_bilinear2(h) # [B=2, C, H=256, W=256]
h = self.conv_after_upsample2(h)
h = self.activation_conv2(h)
out = self.final_conv(h)
return out
class TriplanePredictorViT(nn.Module):
"""
This Vit process the concatenated features of LowResolutionViT and the CNN-based HighResoEncoder
It predicts the final Tri-plane!
"""
def __init__(self, img_size=256, out_channels=96, img2plane_backbone_scale='standard', lora_args=None):
super().__init__()
# the input is concated features, 96 from low_reso_vit and 96 from high_resolution encoder
self.first_conv = nn.Conv2d(in_channels=192, out_channels=256, kernel_size=3, stride=1, padding=1)
self.activation = nn.LeakyReLU(negative_slope=0.01)
self.second_conv = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1)
self.patch_embed = OverlapPatchEmbed(img_size=img_size, patch_size=3, stride=2, in_chans=128, embed_dim=1024, lora_args=lora_args)
if img2plane_backbone_scale == 'small':
self.num_blocks = 1
if img2plane_backbone_scale == 'standard':
self.num_blocks = 1
elif img2plane_backbone_scale == 'large':
self.num_blocks = 3
for i in range(1, self.num_blocks+1):
# sr_ratio = 2 if i == 1 else 1
sr_ratio = 2
setattr(self, f'block{i}', Block(dim=1024, num_heads=4, mlp_ratio=2, sr_ratio=sr_ratio, lora_args=lora_args))
self.pixel_shuffle = nn.PixelShuffle(upscale_factor=2)
# skip concat with low resolution, 256 from pixel_shuffle + 96 from low_reso_vit
self.first_conv_after_cat = nn.Conv2d(in_channels=352, out_channels=256, kernel_size=3, stride=1, padding=1)
self.second_conv_after_cat = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1)
self.third_conv_after_cat = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
self.final_conv = nn.Conv2d(in_channels=128, out_channels=out_channels, kernel_size=3, stride=1, padding=1)
if lora_args is not None:
lora_r = self.lora_r = lora_args.get("lora_r", 8)
self.first_conv = LoRAConv2d(192, 256, kernel_size=3, stride=1, padding=1, r=lora_r)
self.second_conv = LoRAConv2d(256, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
self.first_conv_after_cat = LoRAConv2d(352, 256, kernel_size=3, stride=1, padding=1, r=lora_r)
self.second_conv_after_cat = LoRAConv2d(256, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
self.third_conv_after_cat = LoRAConv2d(128, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
self.final_conv = LoRAConv2d(128, out_channels, kernel_size=3, stride=1, padding=1, r=lora_r)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
fan_out //= m.groups
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
if m.bias is not None:
m.bias.data.zero_()
elif hasattr(m, "reset_parameters"):
m.reset_parameters()
def freeze_patch_emb(self):
self.patch_embed.requires_grad = False
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed'} # has pos_embed may be better
def forward(self, x_low_reso, x_high_resolu):
"""
x_low_reso: [B, 96, 256, 256]
x_high_reso: [B, 96, 256, 256]
return [B, 96, 256, 256]
"""
x = torch.cat([x_low_reso, x_high_resolu], dim=1)
h = self.first_conv(x)
h = self.activation(h)
h = self.second_conv(h)
h = self.activation(h) # [B=2, C=128, H=256, W=256]
h, H, W = self.patch_embed(h) # [B, N, C]
for i in range(1, self.num_blocks+1):
block_i = getattr(self, f'block{i}')
h = block_i(h, H, H) # [B, N, C]
h = h.permute(0, 2, 1) # [B, C, N=H*W]
h = h.view(h.shape[0], h.shape[1], H, W) # [B=2, C=1024, H=256, W=256]
h = self.pixel_shuffle(h)
h = torch.cat([h, x_low_reso], dim=1) # [B, 256+96, 256, 256]
h = self.first_conv_after_cat(h)
h = self.activation(h)
h = self.second_conv_after_cat(h)
h = self.activation(h)
h = self.third_conv_after_cat(h)
h = self.activation(h)
out = self.final_conv(h)
return out
|