File size: 8,777 Bytes
8eb4303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.models.layers import DropPath, to_2tuple, trunc_normal_

from .base import OverlapPatchEmbed, Block
from utils.commons.hparams import hparams
from modules.commons.loralib.layers import MergedLoRALinear, LoRALinear, LoRAConv2d


class LowResolutionViT(nn.Module):
    """
    This Vit process the output of low resolution image features produced by DeepLabv3
    """
    def __init__(self, img_size=64, in_chans=256, lora_args=None):
        super().__init__()

        # patch_embed
        self.patch_embed = OverlapPatchEmbed(img_size=img_size, patch_size=3, stride=2, in_chans=in_chans, embed_dim=1024, lora_args=lora_args)
        
        if hparams.get('img2plane_backbone_scale', 'standard') == 'small':
            self.num_blocks = 2
        if hparams.get('img2plane_backbone_scale', 'standard') == 'standard':
            self.num_blocks = 5
        elif hparams['img2plane_backbone_scale'] == 'large':
            self.num_blocks = 10
        for i in range(1, self.num_blocks+1):
            setattr(self, f'block{i}', Block(dim=1024, num_heads=4, mlp_ratio=2, sr_ratio=1, lora_args=lora_args))
        
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor=2)
        self.upsampling_bilinear1 = nn.UpsamplingBilinear2d(scale_factor=2.)
        self.conv_after_upsample1 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1)
        self.activation_conv1 = nn.ReLU()
        self.upsampling_bilinear2 = nn.UpsamplingBilinear2d(scale_factor=2.)
        self.conv_after_upsample2 = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1)
        self.activation_conv2 = nn.ReLU()
        self.final_conv = nn.Conv2d(in_channels=128, out_channels=96, kernel_size=3, stride=1, padding=1)
        if lora_args is not None:
            lora_r = self.lora_r = lora_args.get("lora_r", 8)
            self.conv_after_upsample1 = LoRAConv2d(256, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.conv_after_upsample2 = LoRAConv2d(128, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.final_conv = LoRAConv2d(128, 96, kernel_size=3, stride=1, padding=1, r=lora_r)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
        elif hasattr(m, "reset_parameters"):
            m.reset_parameters()

    def freeze_patch_emb(self):
        self.patch_embed.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed'}  # has pos_embed may be better

    def forward(self, x):
        """
        x: [B, 256, 64, 64]
        return [B, C=96, H=256, W=256]
        """
        h, H, W = self.patch_embed(x)

        for i in range(1, self.num_blocks+1):
            block_i = getattr(self, f'block{i}')
            h = block_i(h, H, H) # [B=2, 1024, H*W=1024]

        h = h.permute(0, 2, 1) # [B, C, N=H*W]
        h = h.view(h.shape[0], h.shape[1], H, W) # [B=2, C=1024, H=32, W=32]

        h = self.pixel_shuffle(h) # [B=2, C=256, H=64, W=64]
        h = self.upsampling_bilinear1(h) # [B=2, C=256, H=128, W=128]
        h = self.conv_after_upsample1(h)
        h = self.activation_conv1(h)
        h = self.upsampling_bilinear2(h) # [B=2, C, H=256, W=256]
        h = self.conv_after_upsample2(h)
        h = self.activation_conv2(h)
        
        out = self.final_conv(h)
        return out


class TriplanePredictorViT(nn.Module):
    """
    This Vit process the concatenated features of LowResolutionViT and the CNN-based HighResoEncoder
    It predicts the final Tri-plane!
    """
    def __init__(self, img_size=256, out_channels=96, img2plane_backbone_scale='standard', lora_args=None):
        super().__init__()
        # the input is concated features, 96 from low_reso_vit and 96 from high_resolution encoder
        self.first_conv = nn.Conv2d(in_channels=192, out_channels=256, kernel_size=3, stride=1, padding=1)
        self.activation = nn.LeakyReLU(negative_slope=0.01)
        self.second_conv = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1)

        self.patch_embed = OverlapPatchEmbed(img_size=img_size, patch_size=3, stride=2, in_chans=128, embed_dim=1024, lora_args=lora_args)

        if img2plane_backbone_scale == 'small':
            self.num_blocks = 1
        if img2plane_backbone_scale == 'standard':
            self.num_blocks = 1
        elif img2plane_backbone_scale == 'large':
            self.num_blocks = 3
        for i in range(1, self.num_blocks+1):
            # sr_ratio = 2 if i == 1 else 1
            sr_ratio = 2
            setattr(self, f'block{i}', Block(dim=1024, num_heads=4, mlp_ratio=2, sr_ratio=sr_ratio, lora_args=lora_args))
        
        self.pixel_shuffle = nn.PixelShuffle(upscale_factor=2)

        # skip concat with low resolution, 256 from pixel_shuffle + 96 from low_reso_vit
        self.first_conv_after_cat = nn.Conv2d(in_channels=352, out_channels=256, kernel_size=3, stride=1, padding=1) 
        self.second_conv_after_cat = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1) 
        self.third_conv_after_cat = nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1) 

        self.final_conv = nn.Conv2d(in_channels=128, out_channels=out_channels, kernel_size=3, stride=1, padding=1) 

        if lora_args is not None:
            lora_r = self.lora_r = lora_args.get("lora_r", 8)
            self.first_conv = LoRAConv2d(192, 256, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.second_conv = LoRAConv2d(256, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.first_conv_after_cat = LoRAConv2d(352, 256, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.second_conv_after_cat = LoRAConv2d(256, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.third_conv_after_cat = LoRAConv2d(128, 128, kernel_size=3, stride=1, padding=1, r=lora_r)
            self.final_conv = LoRAConv2d(128, out_channels, kernel_size=3, stride=1, padding=1, r=lora_r)

        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
        elif hasattr(m, "reset_parameters"):
            m.reset_parameters()

    def freeze_patch_emb(self):
        self.patch_embed.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed'}  # has pos_embed may be better

    def forward(self, x_low_reso, x_high_resolu):
        """
        x_low_reso: [B, 96, 256, 256]
        x_high_reso: [B, 96, 256, 256]
        return [B, 96, 256, 256]
        """
        x = torch.cat([x_low_reso, x_high_resolu], dim=1)
        h = self.first_conv(x)
        h = self.activation(h)
        h = self.second_conv(h)
        h = self.activation(h) # [B=2, C=128, H=256, W=256]
        
        h, H, W = self.patch_embed(h) # [B, N, C]

        for i in range(1, self.num_blocks+1):
            block_i = getattr(self, f'block{i}')
            h = block_i(h, H, H) # [B, N, C]

        h = h.permute(0, 2, 1) # [B, C, N=H*W]
        h = h.view(h.shape[0], h.shape[1], H, W) # [B=2, C=1024, H=256, W=256]
        h = self.pixel_shuffle(h)

        h = torch.cat([h, x_low_reso], dim=1) #  [B, 256+96, 256, 256]

        h = self.first_conv_after_cat(h)
        h = self.activation(h)
        h = self.second_conv_after_cat(h)
        h = self.activation(h)
        h = self.third_conv_after_cat(h)
        h = self.activation(h)

        out = self.final_conv(h)
        return out