Spaces:
Build error
Build error
File size: 7,771 Bytes
8eb4303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import torch
import math
from modules.real3d.segformer import SegFormerImg2PlaneBackbone, SegFormerSECC2PlaneBackbone
from modules.real3d.img2plane_baseline import OSAvatar_Img2plane
from modules.img2plane.img2plane_model import Img2PlaneModel
from utils.commons.hparams import hparams
# 换成attention吧?value用plane。
class OSAvatarSECC_Img2plane(OSAvatar_Img2plane):
def __init__(self, hp=None, lora_args=None):
if lora_args is None or lora_args.get("lora_mode", 'none') == 'none':
lora_args = None
super().__init__(hp=hp, lora_args=lora_args)
hparams = self.hparams
# extract canonical triplane from src img
self.cano_img2plane_backbone = self.img2plane_backbone # rename
del self.img2plane_backbone
lora_args_secc2plane = lora_args if (lora_args and lora_args.get("lora_mode", 'none') == 'all' or 'secc2plane' in lora_args.get("lora_mode", 'none')) else None
if lora_args_secc2plane:
print("lora_args_secc2plane: ", lora_args_secc2plane)
self.secc_img2plane_backbone = SegFormerSECC2PlaneBackbone(mode=hparams.get('secc_segformer_scale','b0'), out_channels=3*self.triplane_hid_dim*self.triplane_depth, pncc_cond_mode=hparams['pncc_cond_mode'], lora_args=lora_args_secc2plane)
self.lambda_pertube_blink_secc = torch.nn.Parameter(torch.tensor([0.001]), requires_grad=False)
self.lambda_pertube_secc = torch.nn.Parameter(torch.tensor([0.001]), requires_grad=False)
def on_train_full_model(self):
self.requires_grad_(True)
def on_train_nerf(self):
self.cano_img2plane_backbone.requires_grad_(True)
self.secc_img2plane_backbone.requires_grad_(True)
self.decoder.requires_grad_(True)
self.superresolution.requires_grad_(False)
def on_train_superresolution(self):
self.cano_img2plane_backbone.requires_grad_(False)
self.secc_img2plane_backbone.requires_grad_(False)
self.decoder.requires_grad_(False)
self.superresolution.requires_grad_(True)
def cal_cano_plane(self, img, cond=None, **kwargs):
hparams = self.hparams
planes = cano_planes = self.cano_img2plane_backbone(img, cond, **kwargs) # [B, 3, C*D, H, W]
if hparams.get("triplane_feature_type", "triplane") in ['triplane', 'trigrid']:
planes = planes.view(len(planes), 3, self.triplane_hid_dim*self.triplane_depth, planes.shape[-2], planes.shape[-1])
elif hparams.get("triplane_feature_type", "triplane") in ['trigrid_v2']:
b, k, cd, h, w = planes.shape # k = 3
planes = planes.reshape([b, k*cd, h, w])
planes = self.plane2grid_module(planes)
planes = planes.reshape([b, k, cd, h, w])
else:
raise NotImplementedError()
return planes
def cal_secc_plane(self, cond):
cano_pncc, src_pncc, tgt_pncc = cond['cond_cano'], cond['cond_src'], cond['cond_tgt']
if self.hparams.get("pncc_cond_mode", "cano_tgt") == 'cano_src_tgt':
inp_pncc = torch.cat([cano_pncc, src_pncc, tgt_pncc], dim=1)
else:
inp_pncc = torch.cat([cano_pncc, tgt_pncc], dim=1)
secc_planes = self.secc_img2plane_backbone(inp_pncc)
return secc_planes
def cal_plane_given_cano(self, cano_planes, cond=None):
# cano_planes: # [B, 3, C*D, H, W]
secc_planes = self.cal_secc_plane(cond) # [B, 3, C*D, H, W]
if self.hparams.get("phase1_plane_fusion_mode", "add") == 'add':
planes = cano_planes + secc_planes
elif self.hparams.get("phase1_plane_fusion_mode", "add") == 'mul':
planes = cano_planes * secc_planes
else: raise NotImplementedError()
return planes
def cal_plane(self, img, cond, ret=None, **kwargs):
cano_planes = self.cal_cano_plane(img, cond, **kwargs) # [B, 3, C*D, H, W]
planes = self.cal_plane_given_cano(cano_planes, cond)
return planes, cano_planes
def sample(self, coordinates, directions, img, cond=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, ref_camera=None, **synthesis_kwargs):
# Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes.
planes, _ = self.cal_plane(img, cond, ret={}, ref_camera=ref_camera)
return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs)
def synthesis(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=True, use_cached_backbone=False, **synthesis_kwargs):
if ret is None: ret = {}
cam2world_matrix = camera[:, :16].view(-1, 4, 4)
intrinsics = camera[:, 16:25].view(-1, 3, 3)
neural_rendering_resolution = self.neural_rendering_resolution
# Create a batch of rays for volume rendering
ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)
# Create triplanes by running StyleGAN backbone
N, M, _ = ray_origins.shape
if use_cached_backbone:
# use the cached cano_planes obtained from a previous forward with flag cache_backbone=True
cano_planes = self._last_cano_planes
planes = self.cal_plane_given_cano(cano_planes, cond)
else:
planes, cano_planes = self.cal_plane(img, cond, ret, **synthesis_kwargs)
if cache_backbone:
self._last_cano_planes = cano_planes
# Perform volume rendering
feature_samples, depth_samples, weights_samples, is_ray_valid = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) # channels last
# Reshape into 'raw' neural-rendered image
H = W = self.neural_rendering_resolution
feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
weights_image = weights_samples.permute(0, 2, 1).reshape(N,1,H,W).contiguous() # [N,1,H,W]
depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)
if self.hparams.get("mask_invalid_rays", False):
is_ray_valid_mask = is_ray_valid.reshape([feature_samples.shape[0], 1,self.neural_rendering_resolution,self.neural_rendering_resolution]) # [B, 1, H, W]
feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] = -1
# feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] *= 0
# feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] -= 1
depth_image[~is_ray_valid_mask] = depth_image[is_ray_valid_mask].min().item()
# Run superresolution to get final image
rgb_image = feature_image[:, :3]
ret['weights_img'] = weights_image
sr_image = self._forward_sr(rgb_image, feature_image, cond, ret, **synthesis_kwargs)
rgb_image = rgb_image.clamp(-1,1)
sr_image = sr_image.clamp(-1,1)
ret.update({'image_raw': rgb_image, 'image_depth': depth_image, 'image': sr_image, 'image_feature': feature_image[:, 3:], 'plane': planes})
return ret
|