File size: 7,771 Bytes
8eb4303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import torch
import math
from modules.real3d.segformer import SegFormerImg2PlaneBackbone, SegFormerSECC2PlaneBackbone
from modules.real3d.img2plane_baseline import OSAvatar_Img2plane
from modules.img2plane.img2plane_model import Img2PlaneModel
from utils.commons.hparams import hparams
# 换成attention吧?value用plane。

class OSAvatarSECC_Img2plane(OSAvatar_Img2plane):
    def __init__(self,  hp=None, lora_args=None):
        if lora_args is None or lora_args.get("lora_mode", 'none') == 'none':
            lora_args = None
        super().__init__(hp=hp, lora_args=lora_args)
        hparams = self.hparams
        # extract canonical triplane from src img
        self.cano_img2plane_backbone = self.img2plane_backbone # rename
        del self.img2plane_backbone
        lora_args_secc2plane = lora_args if (lora_args and lora_args.get("lora_mode", 'none') == 'all' or 'secc2plane' in lora_args.get("lora_mode", 'none')) else None
        if lora_args_secc2plane:
            print("lora_args_secc2plane: ", lora_args_secc2plane)
        self.secc_img2plane_backbone = SegFormerSECC2PlaneBackbone(mode=hparams.get('secc_segformer_scale','b0'), out_channels=3*self.triplane_hid_dim*self.triplane_depth, pncc_cond_mode=hparams['pncc_cond_mode'], lora_args=lora_args_secc2plane)
        self.lambda_pertube_blink_secc = torch.nn.Parameter(torch.tensor([0.001]), requires_grad=False)
        self.lambda_pertube_secc = torch.nn.Parameter(torch.tensor([0.001]), requires_grad=False)

    def on_train_full_model(self):
        self.requires_grad_(True)
            
    def on_train_nerf(self):
        self.cano_img2plane_backbone.requires_grad_(True)
        self.secc_img2plane_backbone.requires_grad_(True)
        self.decoder.requires_grad_(True)
        self.superresolution.requires_grad_(False)

    def on_train_superresolution(self):
        self.cano_img2plane_backbone.requires_grad_(False)
        self.secc_img2plane_backbone.requires_grad_(False)
        self.decoder.requires_grad_(False)
        self.superresolution.requires_grad_(True)

    def cal_cano_plane(self, img, cond=None, **kwargs):
        hparams = self.hparams
        planes = cano_planes = self.cano_img2plane_backbone(img, cond, **kwargs)  # [B, 3, C*D, H, W]
        if hparams.get("triplane_feature_type", "triplane") in ['triplane', 'trigrid']:
            planes = planes.view(len(planes), 3, self.triplane_hid_dim*self.triplane_depth, planes.shape[-2], planes.shape[-1])
        elif hparams.get("triplane_feature_type", "triplane") in ['trigrid_v2']:
            b, k, cd, h, w = planes.shape # k = 3
            planes = planes.reshape([b, k*cd, h, w])
            planes = self.plane2grid_module(planes)
            planes = planes.reshape([b, k, cd, h, w])
        else:
            raise NotImplementedError()
        return planes

    def cal_secc_plane(self, cond):
        cano_pncc, src_pncc, tgt_pncc = cond['cond_cano'], cond['cond_src'], cond['cond_tgt']
        if self.hparams.get("pncc_cond_mode", "cano_tgt") == 'cano_src_tgt':
            inp_pncc = torch.cat([cano_pncc, src_pncc, tgt_pncc], dim=1)
        else:
            inp_pncc = torch.cat([cano_pncc, tgt_pncc], dim=1)
        secc_planes = self.secc_img2plane_backbone(inp_pncc)
        return secc_planes
    
    def cal_plane_given_cano(self, cano_planes, cond=None):
        # cano_planes: # [B, 3, C*D, H, W]
        secc_planes = self.cal_secc_plane(cond) # [B, 3, C*D, H, W]
        if self.hparams.get("phase1_plane_fusion_mode", "add") == 'add':
            planes = cano_planes + secc_planes
        elif self.hparams.get("phase1_plane_fusion_mode", "add") == 'mul':
            planes = cano_planes * secc_planes
        else: raise NotImplementedError()
        return planes

    def cal_plane(self, img, cond, ret=None, **kwargs):
        cano_planes = self.cal_cano_plane(img, cond, **kwargs) # [B, 3, C*D, H, W]
        planes = self.cal_plane_given_cano(cano_planes, cond)
        return planes, cano_planes

    def sample(self, coordinates, directions, img, cond=None, truncation_psi=1, truncation_cutoff=None, update_emas=False, ref_camera=None, **synthesis_kwargs):
        # Compute RGB features, density for arbitrary 3D coordinates. Mostly used for extracting shapes. 
        planes, _ = self.cal_plane(img, cond, ret={}, ref_camera=ref_camera)
        return self.renderer.run_model(planes, self.decoder, coordinates, directions, self.rendering_kwargs)

    def synthesis(self, img, camera, cond=None, ret=None, update_emas=False, cache_backbone=True, use_cached_backbone=False, **synthesis_kwargs):
        if ret is None: ret = {}
        cam2world_matrix = camera[:, :16].view(-1, 4, 4)
        intrinsics = camera[:, 16:25].view(-1, 3, 3)

        neural_rendering_resolution = self.neural_rendering_resolution

        # Create a batch of rays for volume rendering
        ray_origins, ray_directions = self.ray_sampler(cam2world_matrix, intrinsics, neural_rendering_resolution)

        # Create triplanes by running StyleGAN backbone
        N, M, _ = ray_origins.shape
        if use_cached_backbone:
            # use the cached cano_planes obtained from a previous forward with flag cache_backbone=True
            cano_planes = self._last_cano_planes
            planes = self.cal_plane_given_cano(cano_planes, cond)
        else:
            planes, cano_planes = self.cal_plane(img, cond, ret, **synthesis_kwargs)
        if cache_backbone:
            self._last_cano_planes = cano_planes

        # Perform volume rendering
        feature_samples, depth_samples, weights_samples, is_ray_valid = self.renderer(planes, self.decoder, ray_origins, ray_directions, self.rendering_kwargs) # channels last

        # Reshape into 'raw' neural-rendered image
        H = W = self.neural_rendering_resolution
        feature_image = feature_samples.permute(0, 2, 1).reshape(N, feature_samples.shape[-1], H, W).contiguous()
        weights_image = weights_samples.permute(0, 2, 1).reshape(N,1,H,W).contiguous() # [N,1,H,W]
        depth_image = depth_samples.permute(0, 2, 1).reshape(N, 1, H, W)

        if self.hparams.get("mask_invalid_rays", False):
            is_ray_valid_mask = is_ray_valid.reshape([feature_samples.shape[0], 1,self.neural_rendering_resolution,self.neural_rendering_resolution]) # [B, 1, H, W]
            feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] = -1
            # feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] *= 0
            # feature_image[~is_ray_valid_mask.repeat([1,feature_image.shape[1],1,1])] -= 1
            depth_image[~is_ray_valid_mask] = depth_image[is_ray_valid_mask].min().item()

        # Run superresolution to get final image
        rgb_image = feature_image[:, :3]
        ret['weights_img'] = weights_image
        sr_image = self._forward_sr(rgb_image, feature_image, cond, ret, **synthesis_kwargs)
        rgb_image = rgb_image.clamp(-1,1)
        sr_image = sr_image.clamp(-1,1)
        ret.update({'image_raw': rgb_image, 'image_depth': depth_image, 'image': sr_image, 'image_feature': feature_image[:, 3:], 'plane': planes})
        return ret