Spaces:
Build error
Build error
import os | |
import torch | |
import torch.nn.functional as F | |
import librosa | |
import numpy as np | |
import importlib | |
import tqdm | |
import copy | |
import cv2 | |
from scipy.spatial.transform import Rotation | |
def load_img_to_512_hwc_array(img_name): | |
img = cv2.imread(img_name) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = cv2.resize(img, (512, 512)) | |
return img | |
def load_img_to_normalized_512_bchw_tensor(img_name): | |
img = load_img_to_512_hwc_array(img_name) | |
img = ((torch.tensor(img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2) # [b,c,h,w] | |
return img | |
def mirror_index(index, len_seq): | |
""" | |
get mirror index when indexing a sequence and the index is larger than len_pose | |
args: | |
index: int | |
len_pose: int | |
return: | |
mirror_index: int | |
""" | |
turn = index // len_seq | |
res = index % len_seq | |
if turn % 2 == 0: | |
return res # forward indexing | |
else: | |
return len_seq - res - 1 # reverse indexing | |
def smooth_camera_sequence(camera, kernel_size=7): | |
""" | |
smooth the camera trajectory (i.e., rotation & translation)... | |
args: | |
camera: [N, 25] or [N, 16]. np.ndarray | |
kernel_size: int | |
return: | |
smoothed_camera: [N, 25] or [N, 16]. np.ndarray | |
""" | |
# poses: [N, 25], numpy array | |
N = camera.shape[0] | |
K = kernel_size // 2 | |
poses = camera[:, :16].reshape([-1, 4, 4]).copy() | |
trans = poses[:, :3, 3].copy() # [N, 3] | |
rots = poses[:, :3, :3].copy() # [N, 3, 3] | |
for i in range(N): | |
start = max(0, i - K) | |
end = min(N, i + K + 1) | |
poses[i, :3, 3] = trans[start:end].mean(0) | |
try: | |
poses[i, :3, :3] = Rotation.from_matrix(rots[start:end]).mean().as_matrix() | |
except: | |
if i == 0: | |
poses[i, :3, :3] = rots[i] | |
else: | |
poses[i, :3, :3] = poses[i-1, :3, :3] | |
poses = poses.reshape([-1, 16]) | |
camera[:, :16] = poses | |
return camera | |
def smooth_features_xd(in_tensor, kernel_size=7): | |
""" | |
smooth the feature maps | |
args: | |
in_tensor: [T, c,h,w] or [T, c1,c2,h,w] | |
kernel_size: int | |
return: | |
out_tensor: [T, c,h,w] or [T, c1,c2,h,w] | |
""" | |
t = in_tensor.shape[0] | |
ndim = in_tensor.ndim | |
pad = (kernel_size- 1)//2 | |
in_tensor = torch.cat([torch.flip(in_tensor[0:pad], dims=[0]), in_tensor, torch.flip(in_tensor[t-pad:t], dims=[0])], dim=0) | |
if ndim == 2: # tc | |
_,c = in_tensor.shape | |
in_tensor = in_tensor.permute(1,0).reshape([-1,1,t+2*pad]) # [c, 1, t] | |
elif ndim == 4: # tchw | |
_,c,h,w = in_tensor.shape | |
in_tensor = in_tensor.permute(1,2,3,0).reshape([-1,1,t+2*pad]) # [c, 1, t] | |
elif ndim == 5: # tcchw, like deformation | |
_,c1,c2, h,w = in_tensor.shape | |
in_tensor = in_tensor.permute(1,2,3,4,0).reshape([-1,1,t+2*pad]) # [c, 1, t] | |
else: raise NotImplementedError() | |
avg_kernel = 1 / kernel_size * torch.Tensor([1.]*kernel_size).reshape([1,1,kernel_size]).float().to(in_tensor.device) # [1, 1, kw] | |
out_tensor = F.conv1d(in_tensor, avg_kernel) | |
if ndim == 2: # tc | |
return out_tensor.reshape([c,t]).permute(1,0) | |
elif ndim == 4: # tchw | |
return out_tensor.reshape([c,h,w,t]).permute(3,0,1,2) | |
elif ndim == 5: # tcchw, like deformation | |
return out_tensor.reshape([c1,c2,h,w,t]).permute(4,0,1,2,3) | |
def extract_audio_motion_from_ref_video(video_name): | |
def save_wav16k(audio_name): | |
supported_types = ('.wav', '.mp3', '.mp4', '.avi') | |
assert audio_name.endswith(supported_types), f"Now we only support {','.join(supported_types)} as audio source!" | |
wav16k_name = audio_name[:-4] + '_16k.wav' | |
extract_wav_cmd = f"ffmpeg -i {audio_name} -f wav -ar 16000 -v quiet -y {wav16k_name} -y" | |
os.system(extract_wav_cmd) | |
print(f"Extracted wav file (16khz) from {audio_name} to {wav16k_name}.") | |
return wav16k_name | |
def get_f0( wav16k_name): | |
from data_gen.utils.process_audio.extract_mel_f0 import extract_mel_from_fname, extract_f0_from_wav_and_mel | |
wav, mel = extract_mel_from_fname(wav16k_name) | |
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) | |
f0 = f0.reshape([-1,1]) | |
f0 = torch.tensor(f0) | |
return f0 | |
def get_hubert(wav16k_name): | |
from data_gen.utils.process_audio.extract_hubert import get_hubert_from_16k_wav | |
hubert = get_hubert_from_16k_wav(wav16k_name).detach().numpy() | |
len_mel = hubert.shape[0] | |
x_multiply = 8 | |
if len_mel % x_multiply == 0: | |
num_to_pad = 0 | |
else: | |
num_to_pad = x_multiply - len_mel % x_multiply | |
hubert = np.pad(hubert, pad_width=((0,num_to_pad), (0,0))) | |
hubert = torch.tensor(hubert) | |
return hubert | |
def get_exp(video_name): | |
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video | |
drv_motion_coeff_dict = fit_3dmm_for_a_video(video_name, save=False) | |
exp = torch.tensor(drv_motion_coeff_dict['exp']) | |
return exp | |
wav16k_name = save_wav16k(video_name) | |
f0 = get_f0(wav16k_name) | |
hubert = get_hubert(wav16k_name) | |
os.system(f"rm {wav16k_name}") | |
exp = get_exp(video_name) | |
target_length = min(len(exp), len(hubert)//2, len(f0)//2) | |
exp = exp[:target_length] | |
f0 = f0[:target_length*2] | |
hubert = hubert[:target_length*2] | |
return exp.unsqueeze(0), hubert.unsqueeze(0), f0.unsqueeze(0) | |
if __name__ == '__main__': | |
extract_audio_motion_from_ref_video('data/raw/videos/crop_0213.mp4') |