Spaces:
Build error
Build error
import numpy as np | |
import torch | |
import glob | |
import os | |
import tqdm | |
import librosa | |
import parselmouth | |
from utils.commons.pitch_utils import f0_to_coarse | |
from utils.commons.multiprocess_utils import multiprocess_run_tqdm | |
from utils.commons.os_utils import multiprocess_glob | |
from utils.audio.io import save_wav | |
from moviepy.editor import VideoFileClip | |
from utils.commons.hparams import hparams, set_hparams | |
def resample_wav(wav_name, out_name, sr=16000): | |
wav_raw, sr = librosa.core.load(wav_name, sr=sr) | |
save_wav(wav_raw, out_name, sr) | |
def split_wav(mp4_name, wav_name=None): | |
if wav_name is None: | |
wav_name = mp4_name.replace(".mp4", ".wav").replace("/video/", "/audio/") | |
if os.path.exists(wav_name): | |
return wav_name | |
os.makedirs(os.path.dirname(wav_name), exist_ok=True) | |
video = VideoFileClip(mp4_name,verbose=False) | |
dur = video.duration | |
audio = video.audio | |
assert audio is not None | |
audio.write_audiofile(wav_name,fps=16000,verbose=False,logger=None) | |
return wav_name | |
def librosa_pad_lr(x, fsize, fshift, pad_sides=1): | |
'''compute right padding (final frame) or both sides padding (first and final frames) | |
''' | |
assert pad_sides in (1, 2) | |
# return int(fsize // 2) | |
pad = (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
if pad_sides == 1: | |
return 0, pad | |
else: | |
return pad // 2, pad // 2 + pad % 2 | |
def extract_mel_from_fname(wav_path, | |
fft_size=512, | |
hop_size=320, | |
win_length=512, | |
window="hann", | |
num_mels=80, | |
fmin=80, | |
fmax=7600, | |
eps=1e-6, | |
sample_rate=16000, | |
min_level_db=-100): | |
if isinstance(wav_path, str): | |
wav, _ = librosa.core.load(wav_path, sr=sample_rate) | |
else: | |
wav = wav_path | |
# get amplitude spectrogram | |
x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size, | |
win_length=win_length, window=window, center=False) | |
spc = np.abs(x_stft) # (n_bins, T) | |
# get mel basis | |
fmin = 0 if fmin == -1 else fmin | |
fmax = sample_rate / 2 if fmax == -1 else fmax | |
mel_basis = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=num_mels, fmin=fmin, fmax=fmax) | |
mel = mel_basis @ spc | |
mel = np.log10(np.maximum(eps, mel)) # (n_mel_bins, T) | |
mel = mel.T | |
l_pad, r_pad = librosa_pad_lr(wav, fft_size, hop_size, 1) | |
wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0) | |
return wav.T, mel | |
def extract_f0_from_wav_and_mel(wav, mel, | |
hop_size=320, | |
audio_sample_rate=16000, | |
): | |
time_step = hop_size / audio_sample_rate * 1000 | |
f0_min = 80 | |
f0_max = 750 | |
f0 = parselmouth.Sound(wav, audio_sample_rate).to_pitch_ac( | |
time_step=time_step / 1000, voicing_threshold=0.6, | |
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency'] | |
delta_l = len(mel) - len(f0) | |
assert np.abs(delta_l) <= 8 | |
if delta_l > 0: | |
f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0) | |
f0 = f0[:len(mel)] | |
pitch_coarse = f0_to_coarse(f0) | |
return f0, pitch_coarse | |
def extract_mel_f0_from_fname(wav_name=None, out_name=None): | |
try: | |
out_name = wav_name.replace(".wav", "_mel_f0.npy").replace("/audio/", "/mel_f0/") | |
os.makedirs(os.path.dirname(out_name), exist_ok=True) | |
wav, mel = extract_mel_from_fname(wav_name) | |
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) | |
out_dict = { | |
"mel": mel, # [T, 80] | |
"f0": f0, | |
} | |
np.save(out_name, out_dict) | |
except Exception as e: | |
print(e) | |
def extract_mel_f0_from_video_name(mp4_name, wav_name=None, out_name=None): | |
if mp4_name.endswith(".mp4"): | |
wav_name = split_wav(mp4_name, wav_name) | |
if out_name is None: | |
out_name = mp4_name.replace(".mp4", "_mel_f0.npy").replace("/video/", "/mel_f0/") | |
elif mp4_name.endswith(".wav"): | |
wav_name = mp4_name | |
if out_name is None: | |
out_name = mp4_name.replace(".wav", "_mel_f0.npy").replace("/audio/", "/mel_f0/") | |
os.makedirs(os.path.dirname(out_name), exist_ok=True) | |
wav, mel = extract_mel_from_fname(wav_name) | |
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) | |
out_dict = { | |
"mel": mel, # [T, 80] | |
"f0": f0, | |
} | |
np.save(out_name, out_dict) | |
if __name__ == '__main__': | |
from argparse import ArgumentParser | |
parser = ArgumentParser() | |
parser.add_argument('--video_id', type=str, default='May', help='') | |
args = parser.parse_args() | |
### Process Single Long Audio for NeRF dataset | |
person_id = args.video_id | |
wav_16k_name = f"data/processed/videos/{person_id}/aud.wav" | |
out_name = f"data/processed/videos/{person_id}/aud_mel_f0.npy" | |
extract_mel_f0_from_video_name(wav_16k_name, out_name) | |
print(f"Saved at {out_name}") |