Spaces:
Build error
Build error
"""This script is the training script for Deep3DFaceRecon_pytorch | |
""" | |
import os | |
import time | |
import numpy as np | |
import torch | |
from options.train_options import TrainOptions | |
from data import create_dataset | |
from deep_3drecon_models import create_model | |
from util.visualizer import MyVisualizer | |
from util.util import genvalconf | |
import torch.multiprocessing as mp | |
import torch.distributed as dist | |
def setup(rank, world_size, port): | |
os.environ['MASTER_ADDR'] = 'localhost' | |
os.environ['MASTER_PORT'] = port | |
# initialize the process group | |
dist.init_process_group("gloo", rank=rank, world_size=world_size) | |
def cleanup(): | |
dist.destroy_process_group() | |
def main(rank, world_size, train_opt): | |
val_opt = genvalconf(train_opt, isTrain=False) | |
device = torch.device(rank) | |
torch.cuda.set_device(device) | |
use_ddp = train_opt.use_ddp | |
if use_ddp: | |
setup(rank, world_size, train_opt.ddp_port) | |
train_dataset, val_dataset = create_dataset(train_opt, rank=rank), create_dataset(val_opt, rank=rank) | |
train_dataset_batches, val_dataset_batches = \ | |
len(train_dataset) // train_opt.batch_size, len(val_dataset) // val_opt.batch_size | |
model = create_model(train_opt) # create a model given train_opt.model and other options | |
model.setup(train_opt) | |
model.device = device | |
model.parallelize() | |
if rank == 0: | |
print('The batch number of training images = %d\n, \ | |
the batch number of validation images = %d'% (train_dataset_batches, val_dataset_batches)) | |
model.print_networks(train_opt.verbose) | |
visualizer = MyVisualizer(train_opt) # create a visualizer that display/save images and plots | |
total_iters = train_dataset_batches * (train_opt.epoch_count - 1) # the total number of training iterations | |
t_data = 0 | |
t_val = 0 | |
optimize_time = 0.1 | |
batch_size = 1 if train_opt.display_per_batch else train_opt.batch_size | |
if use_ddp: | |
dist.barrier() | |
times = [] | |
for epoch in range(train_opt.epoch_count, train_opt.n_epochs + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq> | |
epoch_start_time = time.time() # timer for entire epoch | |
iter_data_time = time.time() # timer for train_data loading per iteration | |
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch | |
train_dataset.set_epoch(epoch) | |
for i, train_data in enumerate(train_dataset): # inner loop within one epoch | |
iter_start_time = time.time() # timer for computation per iteration | |
if total_iters % train_opt.print_freq == 0: | |
t_data = iter_start_time - iter_data_time | |
total_iters += batch_size | |
epoch_iter += batch_size | |
torch.cuda.synchronize() | |
optimize_start_time = time.time() | |
model.set_input(train_data) # unpack train_data from dataset and apply preprocessing | |
model.optimize_parameters() # calculate loss functions, get gradients, update network weights | |
torch.cuda.synchronize() | |
optimize_time = (time.time() - optimize_start_time) / batch_size * 0.005 + 0.995 * optimize_time | |
if use_ddp: | |
dist.barrier() | |
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.display_freq == 0): # display images on visdom and save images to a HTML file | |
model.compute_visuals() | |
visualizer.display_current_results(model.get_current_visuals(), total_iters, epoch, | |
save_results=True, | |
add_image=train_opt.add_image) | |
# (total_iters == batch_size or total_iters % train_opt.evaluation_freq == 0) | |
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.print_freq == 0): # print training losses and save logging information to the disk | |
losses = model.get_current_losses() | |
visualizer.print_current_losses(epoch, epoch_iter, losses, optimize_time, t_data) | |
visualizer.plot_current_losses(total_iters, losses) | |
if total_iters == batch_size or total_iters % train_opt.evaluation_freq == 0: | |
with torch.no_grad(): | |
torch.cuda.synchronize() | |
val_start_time = time.time() | |
losses_avg = {} | |
model.eval() | |
for j, val_data in enumerate(val_dataset): | |
model.set_input(val_data) | |
model.optimize_parameters(isTrain=False) | |
if rank == 0 and j < train_opt.vis_batch_nums: | |
model.compute_visuals() | |
visualizer.display_current_results(model.get_current_visuals(), total_iters, epoch, | |
dataset='val', save_results=True, count=j * val_opt.batch_size, | |
add_image=train_opt.add_image) | |
if j < train_opt.eval_batch_nums: | |
losses = model.get_current_losses() | |
for key, value in losses.items(): | |
losses_avg[key] = losses_avg.get(key, 0) + value | |
for key, value in losses_avg.items(): | |
losses_avg[key] = value / min(train_opt.eval_batch_nums, val_dataset_batches) | |
torch.cuda.synchronize() | |
eval_time = time.time() - val_start_time | |
if rank == 0: | |
visualizer.print_current_losses(epoch, epoch_iter, losses_avg, eval_time, t_data, dataset='val') # visualize training results | |
visualizer.plot_current_losses(total_iters, losses_avg, dataset='val') | |
model.train() | |
if use_ddp: | |
dist.barrier() | |
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.save_latest_freq == 0): # cache our latest model every <save_latest_freq> iterations | |
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) | |
print(train_opt.name) # it's useful to occasionally show the experiment name on console | |
save_suffix = 'iter_%d' % total_iters if train_opt.save_by_iter else 'latest' | |
model.save_networks(save_suffix) | |
if use_ddp: | |
dist.barrier() | |
iter_data_time = time.time() | |
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, train_opt.n_epochs, time.time() - epoch_start_time)) | |
model.update_learning_rate() # update learning rates at the end of every epoch. | |
if rank == 0 and epoch % train_opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs | |
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) | |
model.save_networks('latest') | |
model.save_networks(epoch) | |
if use_ddp: | |
dist.barrier() | |
if __name__ == '__main__': | |
import warnings | |
warnings.filterwarnings("ignore") | |
train_opt = TrainOptions().parse() # get training options | |
world_size = train_opt.world_size | |
if train_opt.use_ddp: | |
mp.spawn(main, args=(world_size, train_opt), nprocs=world_size, join=True) | |
else: | |
main(0, world_size, train_opt) | |