Spaces:
Build error
Build error
import os | |
import torch | |
import torch.nn.functional as F | |
import torchshow as ts | |
import librosa | |
import random | |
import time | |
import numpy as np | |
import importlib | |
import tqdm | |
import copy | |
import cv2 | |
import math | |
# common utils | |
from utils.commons.hparams import hparams, set_hparams | |
from utils.commons.tensor_utils import move_to_cuda, convert_to_tensor | |
from utils.commons.ckpt_utils import load_ckpt, get_last_checkpoint | |
# 3DMM-related utils | |
from deep_3drecon.deep_3drecon_models.bfm import ParametricFaceModel | |
from data_util.face3d_helper import Face3DHelper | |
from data_gen.utils.process_image.fit_3dmm_landmark import fit_3dmm_for_a_image | |
from data_gen.utils.process_video.fit_3dmm_landmark import fit_3dmm_for_a_video | |
from data_gen.utils.process_image.extract_lm2d import extract_lms_mediapipe_job | |
from data_gen.utils.process_image.fit_3dmm_landmark import index_lm68_from_lm468 | |
from deep_3drecon.secc_renderer import SECC_Renderer | |
from data_gen.eg3d.convert_to_eg3d_convention import get_eg3d_convention_camera_pose_intrinsic | |
# Face Parsing | |
from data_gen.utils.mp_feature_extractors.mp_segmenter import MediapipeSegmenter | |
from data_gen.utils.process_video.extract_segment_imgs import inpaint_torso_job, extract_background | |
# other inference utils | |
from inference.infer_utils import mirror_index, load_img_to_512_hwc_array, load_img_to_normalized_512_bchw_tensor | |
from inference.infer_utils import smooth_camera_sequence, smooth_features_xd | |
from inference.edit_secc import blink_eye_for_secc, hold_eye_opened_for_secc | |
def read_first_frame_from_a_video(vid_name): | |
frames = [] | |
cap = cv2.VideoCapture(vid_name) | |
ret, frame_bgr = cap.read() | |
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB) | |
return frame_rgb | |
def analyze_weights_img(gen_output): | |
img_raw = gen_output['image_raw'] | |
mask_005_to_03 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.3).repeat([1,3,1,1]) | |
mask_005_to_05 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.5).repeat([1,3,1,1]) | |
mask_005_to_07 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.7).repeat([1,3,1,1]) | |
mask_005_to_09 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<0.9).repeat([1,3,1,1]) | |
mask_005_to_10 = torch.bitwise_and(gen_output['weights_img']>0.05, gen_output['weights_img']<1.0).repeat([1,3,1,1]) | |
img_raw_005_to_03 = img_raw.clone() | |
img_raw_005_to_03[~mask_005_to_03] = -1 | |
img_raw_005_to_05 = img_raw.clone() | |
img_raw_005_to_05[~mask_005_to_05] = -1 | |
img_raw_005_to_07 = img_raw.clone() | |
img_raw_005_to_07[~mask_005_to_07] = -1 | |
img_raw_005_to_09 = img_raw.clone() | |
img_raw_005_to_09[~mask_005_to_09] = -1 | |
img_raw_005_to_10 = img_raw.clone() | |
img_raw_005_to_10[~mask_005_to_10] = -1 | |
ts.save([img_raw_005_to_03[0], img_raw_005_to_05[0], img_raw_005_to_07[0], img_raw_005_to_09[0], img_raw_005_to_10[0]]) | |
def cal_face_area_percent(img_name): | |
img = cv2.resize(cv2.imread(img_name)[:,:,::-1], (512,512)) | |
lm478 = extract_lms_mediapipe_job(img) / 512 | |
min_x = lm478[:,0].min() | |
max_x = lm478[:,0].max() | |
min_y = lm478[:,1].min() | |
max_y = lm478[:,1].max() | |
area = (max_x - min_x) * (max_y - min_y) | |
return area | |
def crop_img_on_face_area_percent(img_name, out_name='temp/cropped_src_img.png', min_face_area_percent=0.2): | |
try: | |
os.makedirs(os.path.dirname(out_name), exist_ok=True) | |
except: pass | |
face_area_percent = cal_face_area_percent(img_name) | |
if face_area_percent >= min_face_area_percent: | |
print(f"face area percent {face_area_percent} larger than threshold {min_face_area_percent}, directly use the input image...") | |
cmd = f"cp {img_name} {out_name}" | |
os.system(cmd) | |
return out_name | |
else: | |
print(f"face area percent {face_area_percent} smaller than threshold {min_face_area_percent}, crop the input image...") | |
img = cv2.resize(cv2.imread(img_name)[:,:,::-1], (512,512)) | |
lm478 = extract_lms_mediapipe_job(img).astype(int) | |
min_x = lm478[:,0].min() | |
max_x = lm478[:,0].max() | |
min_y = lm478[:,1].min() | |
max_y = lm478[:,1].max() | |
face_area = (max_x - min_x) * (max_y - min_y) | |
target_total_area = face_area / min_face_area_percent | |
target_hw = int(target_total_area**0.5) | |
center_x, center_y = (min_x+max_x)/2, (min_y+max_y)/2 | |
shrink_pixels = 2 * max(-(center_x - target_hw/2), center_x + target_hw/2 - 512, -(center_y - target_hw/2), center_y + target_hw/2-512) | |
shrink_pixels = max(0, shrink_pixels) | |
hw = math.floor(target_hw - shrink_pixels) | |
new_min_x = int(center_x - hw/2) | |
new_max_x = int(center_x + hw/2) | |
new_min_y = int(center_y - hw/2) | |
new_max_y = int(center_y + hw/2) | |
img = img[new_min_y:new_max_y, new_min_x:new_max_x] | |
img = cv2.resize(img, (512, 512)) | |
cv2.imwrite(out_name, img[:,:,::-1]) | |
return out_name | |
class GeneFace2Infer: | |
def __init__(self, audio2secc_dir, head_model_dir, torso_model_dir, device=None, inp=None): | |
if device is None: | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.audio2secc_model = self.load_audio2secc(audio2secc_dir) | |
self.secc2video_model = self.load_secc2video(head_model_dir, torso_model_dir, inp) | |
self.audio2secc_model.to(device).eval() | |
self.secc2video_model.to(device).eval() | |
self.seg_model = MediapipeSegmenter() | |
self.secc_renderer = SECC_Renderer(512) | |
self.face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='lm68') | |
self.mp_face3d_helper = Face3DHelper(use_gpu=True, keypoint_mode='mediapipe') | |
self.camera_selector = KNearestCameraSelector() | |
def load_audio2secc(self, audio2secc_dir): | |
config_name = f"{audio2secc_dir}/config.yaml" if not audio2secc_dir.endswith(".ckpt") else f"{os.path.dirname(audio2secc_dir)}/config.yaml" | |
set_hparams(f"{config_name}", print_hparams=False) | |
self.audio2secc_dir = audio2secc_dir | |
self.audio2secc_hparams = copy.deepcopy(hparams) | |
from modules.audio2motion.vae import VAEModel, PitchContourVAEModel | |
from modules.audio2motion.cfm.icl_audio2motion_model import InContextAudio2MotionModel | |
if self.audio2secc_hparams['audio_type'] == 'hubert': | |
audio_in_dim = 1024 | |
elif self.audio2secc_hparams['audio_type'] == 'mfcc': | |
audio_in_dim = 13 | |
if 'icl' in hparams['task_cls']: | |
self.use_icl_audio2motion = True | |
model = InContextAudio2MotionModel(hparams['icl_model_type'], hparams=self.audio2secc_hparams) | |
else: | |
self.use_icl_audio2motion = False | |
if hparams.get("use_pitch", False) is True: | |
model = PitchContourVAEModel(hparams, in_out_dim=64, audio_in_dim=audio_in_dim) | |
else: | |
model = VAEModel(in_out_dim=64, audio_in_dim=audio_in_dim) | |
load_ckpt(model, f"{audio2secc_dir}", model_name='model', strict=True) | |
return model | |
def load_secc2video(self, head_model_dir, torso_model_dir, inp): | |
if inp is None: | |
inp = {} | |
self.head_model_dir = head_model_dir | |
self.torso_model_dir = torso_model_dir | |
if torso_model_dir != '': | |
if torso_model_dir.endswith(".ckpt"): | |
set_hparams(f"{os.path.dirname(torso_model_dir)}/config.yaml", print_hparams=False) | |
else: | |
set_hparams(f"{torso_model_dir}/config.yaml", print_hparams=False) | |
if inp.get('head_torso_threshold', None) is not None: | |
hparams['htbsr_head_threshold'] = inp['head_torso_threshold'] | |
self.secc2video_hparams = copy.deepcopy(hparams) | |
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane_Torso | |
model = OSAvatarSECC_Img2plane_Torso() | |
load_ckpt(model, f"{torso_model_dir}", model_name='model', strict=False) | |
if head_model_dir != '': | |
print("| Warning: Assigned --torso_ckpt which also contains head, but --head_ckpt is also assigned, skipping the --head_ckpt.") | |
else: | |
from modules.real3d.secc_img2plane_torso import OSAvatarSECC_Img2plane | |
if head_model_dir.endswith(".ckpt"): | |
set_hparams(f"{os.path.dirname(head_model_dir)}/config.yaml", print_hparams=False) | |
else: | |
set_hparams(f"{head_model_dir}/config.yaml", print_hparams=False) | |
if inp.get('head_torso_threshold', None) is not None: | |
hparams['htbsr_head_threshold'] = inp['head_torso_threshold'] | |
self.secc2video_hparams = copy.deepcopy(hparams) | |
model = OSAvatarSECC_Img2plane() | |
load_ckpt(model, f"{head_model_dir}", model_name='model', strict=False) | |
return model | |
def infer_once(self, inp): | |
self.inp = inp | |
samples = self.prepare_batch_from_inp(inp) | |
seed = inp['seed'] if inp['seed'] is not None else int(time.time()) | |
random.seed(seed) | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
out_name = self.forward_system(samples, inp) | |
return out_name | |
def prepare_batch_from_inp(self, inp): | |
""" | |
:param inp: {'audio_source_name': (str)} | |
:return: a dict that contains the condition feature of NeRF | |
""" | |
cropped_name = 'temp/cropped_src_img_512.png' | |
crop_img_on_face_area_percent(inp['src_image_name'], cropped_name, min_face_area_percent=inp['min_face_area_percent']) | |
inp['src_image_name'] = cropped_name | |
sample = {} | |
# Process Driving Motion | |
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']: | |
self.save_wav16k(inp['drv_audio_name']) | |
if self.audio2secc_hparams['audio_type'] == 'hubert': | |
hubert = self.get_hubert(self.wav16k_name) | |
elif self.audio2secc_hparams['audio_type'] == 'mfcc': | |
hubert = self.get_mfcc(self.wav16k_name) / 100 | |
f0 = self.get_f0(self.wav16k_name) | |
if f0.shape[0] > len(hubert): | |
f0 = f0[:len(hubert)] | |
else: | |
num_to_pad = len(hubert) - len(f0) | |
f0 = np.pad(f0, pad_width=((0,num_to_pad), (0,0))) | |
t_x = hubert.shape[0] | |
x_mask = torch.ones([1, t_x]).float() # mask for audio frames | |
y_mask = torch.ones([1, t_x//2]).float() # mask for motion/image frames | |
sample.update({ | |
'hubert': torch.from_numpy(hubert).float().unsqueeze(0).cuda(), | |
'f0': torch.from_numpy(f0).float().reshape([1,-1]).cuda(), | |
'x_mask': x_mask.cuda(), | |
'y_mask': y_mask.cuda(), | |
}) | |
sample['blink'] = torch.zeros([1, t_x, 1]).long().cuda() | |
sample['audio'] = sample['hubert'] | |
sample['eye_amp'] = torch.ones([1, 1]).cuda() * 1.0 | |
sample['mouth_amp'] = torch.ones([1, 1]).cuda() * inp['mouth_amp'] | |
elif inp['drv_audio_name'][-4:] in ['.mp4']: | |
drv_motion_coeff_dict = fit_3dmm_for_a_video(inp['drv_audio_name'], save=False) | |
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict) | |
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2 | |
self.drv_motion_coeff_dict = drv_motion_coeff_dict | |
elif inp['drv_audio_name'][-4:] in ['.npy']: | |
drv_motion_coeff_dict = np.load(inp['drv_audio_name'], allow_pickle=True).tolist() | |
drv_motion_coeff_dict = convert_to_tensor(drv_motion_coeff_dict) | |
t_x = drv_motion_coeff_dict['exp'].shape[0] * 2 | |
self.drv_motion_coeff_dict = drv_motion_coeff_dict | |
else: | |
raise ValueError() | |
# Face Parsing | |
image_name = inp['src_image_name'] | |
if image_name.endswith(".mp4"): | |
img = read_first_frame_from_a_video(image_name) | |
image_name = inp['src_image_name'] = image_name[:-4] + '.png' | |
cv2.imwrite(image_name, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) | |
sample['ref_gt_img'] = load_img_to_normalized_512_bchw_tensor(image_name).cuda() | |
img = load_img_to_512_hwc_array(image_name) | |
segmap = self.seg_model._cal_seg_map(img) | |
sample['segmap'] = torch.tensor(segmap).float().unsqueeze(0).cuda() | |
head_img = self.seg_model._seg_out_img_with_segmap(img, segmap, mode='head')[0] | |
sample['ref_head_img'] = ((torch.tensor(head_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w] | |
inpaint_torso_img, _, _, _ = inpaint_torso_job(img, segmap) | |
sample['ref_torso_img'] = ((torch.tensor(inpaint_torso_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w] | |
if inp['bg_image_name'] == '': | |
bg_img = extract_background([img], [segmap], 'lama') | |
else: | |
bg_img = cv2.imread(inp['bg_image_name']) | |
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB) | |
bg_img = cv2.resize(bg_img, (512,512)) | |
sample['bg_img'] = ((torch.tensor(bg_img) - 127.5)/127.5).float().unsqueeze(0).permute(0, 3, 1,2).cuda() # [b,c,h,w] | |
# 3DMM, get identity code and camera pose | |
coeff_dict = fit_3dmm_for_a_image(image_name, save=False) | |
assert coeff_dict is not None | |
src_id = torch.tensor(coeff_dict['id']).reshape([1,80]).cuda() | |
src_exp = torch.tensor(coeff_dict['exp']).reshape([1,64]).cuda() | |
src_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda() | |
src_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda() | |
sample['id'] = src_id.repeat([t_x//2,1]) | |
# get the src_kp for torso model | |
src_kp = self.face3d_helper.reconstruct_lm2d(src_id, src_exp, src_euler, src_trans) # [1, 68, 2] | |
src_kp = (src_kp-0.5) / 0.5 # rescale to -1~1 | |
sample['src_kp'] = torch.clamp(src_kp, -1, 1).repeat([t_x//2,1,1]) | |
# get camera pose file | |
# random.seed(time.time()) | |
if inp['drv_pose_name'] in ['nearest', 'topk']: | |
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler': torch.tensor(coeff_dict['euler']).reshape([1,3]), 'trans': torch.tensor(coeff_dict['trans']).reshape([1,3])}) | |
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics'] | |
camera = np.concatenate([c2w.reshape([1,16]), intrinsics.reshape([1,9])], axis=-1) | |
coeff_names, distance_matrix = self.camera_selector.find_k_nearest(camera, k=100) | |
coeff_names = coeff_names[0] # squeeze | |
if inp['drv_pose_name'] == 'nearest': | |
inp['drv_pose_name'] = coeff_names[0] | |
else: | |
inp['drv_pose_name'] = random.choice(coeff_names) | |
# inp['drv_pose_name'] = coeff_names[0] | |
elif inp['drv_pose_name'] == 'random': | |
inp['drv_pose_name'] = self.camera_selector.random_select() | |
else: | |
inp['drv_pose_name'] = inp['drv_pose_name'] | |
print(f"| To extract pose from {inp['drv_pose_name']}") | |
# extract camera pose | |
if inp['drv_pose_name'] == 'static': | |
sample['euler'] = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda().repeat([t_x//2,1]) # default static pose | |
sample['trans'] = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda().repeat([t_x//2,1]) | |
else: # from file | |
if inp['drv_pose_name'].endswith('.mp4'): | |
# extract coeff from video | |
drv_pose_coeff_dict = fit_3dmm_for_a_video(inp['drv_pose_name'], save=False) | |
else: | |
# load from npy | |
drv_pose_coeff_dict = np.load(inp['drv_pose_name'], allow_pickle=True).tolist() | |
print(f"| Extracted pose from {inp['drv_pose_name']}") | |
eulers = convert_to_tensor(drv_pose_coeff_dict['euler']).reshape([-1,3]).cuda() | |
trans = convert_to_tensor(drv_pose_coeff_dict['trans']).reshape([-1,3]).cuda() | |
len_pose = len(eulers) | |
index_lst = [mirror_index(i, len_pose) for i in range(t_x//2)] | |
sample['euler'] = eulers[index_lst] | |
sample['trans'] = trans[index_lst] | |
# fix the z axis | |
sample['trans'][:, -1] = sample['trans'][0:1, -1].repeat([sample['trans'].shape[0]]) | |
# mapping to the init pose | |
if inp.get("map_to_init_pose", 'False') == 'True': | |
diff_euler = torch.tensor(coeff_dict['euler']).reshape([1,3]).cuda() - sample['euler'][0:1] | |
sample['euler'] = sample['euler'] + diff_euler | |
diff_trans = torch.tensor(coeff_dict['trans']).reshape([1,3]).cuda() - sample['trans'][0:1] | |
sample['trans'] = sample['trans'] + diff_trans | |
# prepare camera | |
camera_ret = get_eg3d_convention_camera_pose_intrinsic({'euler':sample['euler'].cpu(), 'trans':sample['trans'].cpu()}) | |
c2w, intrinsics = camera_ret['c2w'], camera_ret['intrinsics'] | |
# smooth camera | |
camera_smo_ksize = 7 | |
camera = np.concatenate([c2w.reshape([-1,16]), intrinsics.reshape([-1,9])], axis=-1) | |
camera = smooth_camera_sequence(camera, kernel_size=camera_smo_ksize) # [T, 25] | |
camera = torch.tensor(camera).cuda().float() | |
sample['camera'] = camera | |
return sample | |
def get_hubert(self, wav16k_name): | |
from data_gen.utils.process_audio.extract_hubert import get_hubert_from_16k_wav | |
hubert = get_hubert_from_16k_wav(wav16k_name).detach().numpy() | |
len_mel = hubert.shape[0] | |
x_multiply = 8 | |
if len_mel % x_multiply == 0: | |
num_to_pad = 0 | |
else: | |
num_to_pad = x_multiply - len_mel % x_multiply | |
hubert = np.pad(hubert, pad_width=((0,num_to_pad), (0,0))) | |
return hubert | |
def get_mfcc(self, wav16k_name): | |
from utils.audio import librosa_wav2mfcc | |
hparams['fft_size'] = 1200 | |
hparams['win_size'] = 1200 | |
hparams['hop_size'] = 480 | |
hparams['audio_num_mel_bins'] = 80 | |
hparams['fmin'] = 80 | |
hparams['fmax'] = 12000 | |
hparams['audio_sample_rate'] = 24000 | |
mfcc = librosa_wav2mfcc(wav16k_name, | |
fft_size=hparams['fft_size'], | |
hop_size=hparams['hop_size'], | |
win_length=hparams['win_size'], | |
num_mels=hparams['audio_num_mel_bins'], | |
fmin=hparams['fmin'], | |
fmax=hparams['fmax'], | |
sample_rate=hparams['audio_sample_rate'], | |
center=True) | |
mfcc = np.array(mfcc).reshape([-1, 13]) | |
len_mel = mfcc.shape[0] | |
x_multiply = 8 | |
if len_mel % x_multiply == 0: | |
num_to_pad = 0 | |
else: | |
num_to_pad = x_multiply - len_mel % x_multiply | |
mfcc = np.pad(mfcc, pad_width=((0,num_to_pad), (0,0))) | |
return mfcc | |
def forward_audio2secc(self, batch, inp=None): | |
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']: | |
from inference.infer_utils import extract_audio_motion_from_ref_video | |
if self.use_icl_audio2motion: | |
self.audio2secc_model.empty_context() # make this function reloadable | |
if self.use_icl_audio2motion and inp['drv_talking_style_name'].endswith(".mp4"): | |
ref_exp, ref_hubert, ref_f0 = extract_audio_motion_from_ref_video(inp['drv_talking_style_name']) | |
self.audio2secc_model.add_sample_to_context(ref_exp, ref_hubert, ref_f0) | |
elif self.use_icl_audio2motion and inp['drv_talking_style_name'].endswith((".png",'.jpg')): | |
style_coeff_dict = fit_3dmm_for_a_image(inp['drv_talking_style_name']) | |
ref_exp = torch.tensor(style_coeff_dict['exp']).reshape([1,1,64]).cuda() | |
self.audio2secc_model.add_sample_to_context(ref_exp.repeat([1, 100, 1]), hubert=None, f0=None) | |
else: | |
print("| WARNING: Not assigned reference talking style, passing...") | |
# audio-to-exp | |
ret = {} | |
# pred = self.audio2secc_model.forward(batch, ret=ret,train=False, ,) | |
pred = self.audio2secc_model.forward(batch, ret=ret,train=False, temperature=inp['temperature'], denoising_steps=inp['denoising_steps'], cond_scale=inp['cfg_scale']) | |
print("| audio-to-motion finished") | |
if pred.shape[-1] == 144: | |
id = ret['pred'][0][:,:80] | |
exp = ret['pred'][0][:,80:] | |
else: | |
id = batch['id'] | |
exp = ret['pred'][0] | |
if len(id) < len(exp): # happens when use ICL | |
id = torch.cat([id, id[0].unsqueeze(0).repeat([len(exp)-len(id),1])]) | |
batch['id'] = id | |
batch['exp'] = exp | |
else: | |
drv_motion_coeff_dict = self.drv_motion_coeff_dict | |
batch['exp'] = torch.FloatTensor(drv_motion_coeff_dict['exp']).cuda() | |
batch['id'] = batch['id'][:-4] | |
batch['exp'] = batch['exp'][:-4] | |
batch['euler'] = batch['euler'][:-4] | |
batch['trans'] = batch['trans'][:-4] | |
batch = self.get_driving_motion(batch['id'], batch['exp'], batch['euler'], batch['trans'], batch, inp) | |
if self.use_icl_audio2motion: | |
self.audio2secc_model.empty_context() | |
return batch | |
def get_driving_motion(self, id, exp, euler, trans, batch, inp): | |
zero_eulers = torch.zeros([id.shape[0], 3]).to(id.device) | |
zero_trans = torch.zeros([id.shape[0], 3]).to(exp.device) | |
# render the secc given the id,exp | |
with torch.no_grad(): | |
chunk_size = 50 | |
drv_secc_color_lst = [] | |
num_iters = len(id)//chunk_size if len(id)%chunk_size == 0 else len(id)//chunk_size+1 | |
for i in tqdm.trange(num_iters, desc="rendering drv secc"): | |
torch.cuda.empty_cache() | |
face_mask, drv_secc_color = self.secc_renderer(id[i*chunk_size:(i+1)*chunk_size], exp[i*chunk_size:(i+1)*chunk_size], zero_eulers[i*chunk_size:(i+1)*chunk_size], zero_trans[i*chunk_size:(i+1)*chunk_size]) | |
drv_secc_color_lst.append(drv_secc_color.cpu()) | |
drv_secc_colors = torch.cat(drv_secc_color_lst, dim=0) | |
_, src_secc_color = self.secc_renderer(id[0:1], exp[0:1], zero_eulers[0:1], zero_trans[0:1]) | |
_, cano_secc_color = self.secc_renderer(id[0:1], exp[0:1]*0, zero_eulers[0:1], zero_trans[0:1]) | |
batch['drv_secc'] = drv_secc_colors.cuda() | |
batch['src_secc'] = src_secc_color.cuda() | |
batch['cano_secc'] = cano_secc_color.cuda() | |
# blinking secc | |
if inp['blink_mode'] == 'period': | |
period = 5 # second | |
if inp['hold_eye_opened'] == 'True': | |
for i in tqdm.trange(len(drv_secc_colors),desc="opening eye for secc"): | |
batch['drv_secc'][i] = hold_eye_opened_for_secc(batch['drv_secc'][i]) | |
for i in tqdm.trange(len(drv_secc_colors),desc="blinking secc"): | |
if i % (25*period) == 0: | |
blink_dur_frames = random.randint(8, 12) | |
for offset in range(blink_dur_frames): | |
j = offset + i | |
if j >= len(drv_secc_colors)-1: break | |
def blink_percent_fn(t, T): | |
return -4/T**2 * t**2 + 4/T * t | |
blink_percent = blink_percent_fn(offset, blink_dur_frames) | |
secc = batch['drv_secc'][j] | |
out_secc = blink_eye_for_secc(secc, blink_percent) | |
out_secc = out_secc.cuda() | |
batch['drv_secc'][j] = out_secc | |
# get the drv_kp for torso model, using the transformed trajectory | |
drv_kp = self.face3d_helper.reconstruct_lm2d(id, exp, euler, trans) # [T, 68, 2] | |
drv_kp = (drv_kp-0.5) / 0.5 # rescale to -1~1 | |
batch['drv_kp'] = torch.clamp(drv_kp, -1, 1) | |
return batch | |
def forward_secc2video(self, batch, inp=None): | |
num_frames = len(batch['drv_secc']) | |
camera = batch['camera'] | |
src_kps = batch['src_kp'] | |
drv_kps = batch['drv_kp'] | |
cano_secc_color = batch['cano_secc'] | |
src_secc_color = batch['src_secc'] | |
drv_secc_colors = batch['drv_secc'] | |
ref_img_gt = batch['ref_gt_img'] | |
ref_img_head = batch['ref_head_img'] | |
ref_torso_img = batch['ref_torso_img'] | |
bg_img = batch['bg_img'] | |
segmap = batch['segmap'] | |
# smooth torso drv_kp | |
torso_smo_ksize = 7 | |
drv_kps = smooth_features_xd(drv_kps.reshape([-1, 68*2]), kernel_size=torso_smo_ksize).reshape([-1, 68, 2]) | |
# forward renderer | |
img_raw_lst = [] | |
img_lst = [] | |
depth_img_lst = [] | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(inp['fp16']): | |
for i in tqdm.trange(num_frames, desc="Real3D-Portrait is rendering frames"): | |
kp_src = torch.cat([src_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(src_kps.device)],dim=-1) | |
kp_drv = torch.cat([drv_kps[i:i+1].reshape([1, 68, 2]), torch.zeros([1, 68,1]).to(drv_kps.device)],dim=-1) | |
cond={'cond_cano': cano_secc_color,'cond_src': src_secc_color, 'cond_tgt': drv_secc_colors[i:i+1].cuda(), | |
'ref_torso_img': ref_torso_img, 'bg_img': bg_img, 'segmap': segmap, | |
'kp_s': kp_src, 'kp_d': kp_drv, | |
'ref_cameras': camera[i:i+1], | |
} | |
if i == 0: | |
gen_output = self.secc2video_model.forward(img=ref_img_head, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=True, use_cached_backbone=False) | |
else: | |
gen_output = self.secc2video_model.forward(img=ref_img_head, camera=camera[i:i+1], cond=cond, ret={}, cache_backbone=False, use_cached_backbone=True) | |
img_lst.append(gen_output['image']) | |
img_raw_lst.append(gen_output['image_raw']) | |
depth_img_lst.append(gen_output['image_depth']) | |
# save demo video | |
depth_imgs = torch.cat(depth_img_lst) | |
imgs = torch.cat(img_lst) | |
imgs_raw = torch.cat(img_raw_lst) | |
secc_img = torch.cat([torch.nn.functional.interpolate(drv_secc_colors[i:i+1], (512,512)) for i in range(num_frames)]) | |
if inp['out_mode'] == 'concat_debug': | |
secc_img = secc_img.cpu() | |
secc_img = ((secc_img + 1) * 127.5).permute(0, 2, 3, 1).int().numpy() | |
depth_img = F.interpolate(depth_imgs, (512,512)).cpu() | |
depth_img = depth_img.repeat([1,3,1,1]) | |
depth_img = (depth_img - depth_img.min()) / (depth_img.max() - depth_img.min()) | |
depth_img = depth_img * 2 - 1 | |
depth_img = depth_img.clamp(-1,1) | |
secc_img = secc_img / 127.5 - 1 | |
secc_img = torch.from_numpy(secc_img).permute(0, 3, 1, 2) | |
imgs = torch.cat([ref_img_gt.repeat([imgs.shape[0],1,1,1]).cpu(), secc_img, F.interpolate(imgs_raw, (512,512)).cpu(), depth_img, imgs.cpu()], dim=-1) | |
elif inp['out_mode'] == 'final': | |
imgs = imgs.cpu() | |
elif inp['out_mode'] == 'debug': | |
raise NotImplementedError("to do: save separate videos") | |
imgs = imgs.clamp(-1,1) | |
import imageio | |
debug_name = 'demo.mp4' | |
out_imgs = ((imgs.permute(0, 2, 3, 1) + 1)/2 * 255).int().cpu().numpy().astype(np.uint8) | |
writer = imageio.get_writer(debug_name, fps=25, format='FFMPEG', codec='h264') | |
for i in tqdm.trange(len(out_imgs), desc="Imageio is saving video"): | |
writer.append_data(out_imgs[i]) | |
writer.close() | |
out_fname = 'infer_out/tmp/' + os.path.basename(inp['src_image_name'])[:-4] + '_' + os.path.basename(inp['drv_pose_name'])[:-4] + '.mp4' if inp['out_name'] == '' else inp['out_name'] | |
try: | |
os.makedirs(os.path.dirname(out_fname), exist_ok=True) | |
except: pass | |
if inp['drv_audio_name'][-4:] in ['.wav', '.mp3']: | |
# cmd = f"ffmpeg -i {debug_name} -i {self.wav16k_name} -y -shortest {out_fname}" | |
cmd = f"ffmpeg -i {debug_name} -i {self.wav16k_name} -y -v quiet -shortest {out_fname}" | |
print(cmd) | |
os.system(cmd) | |
os.system(f"rm {debug_name}") | |
os.system(f"rm {self.wav16k_name}") | |
else: | |
ret = os.system(f"ffmpeg -i {debug_name} -i {inp['drv_audio_name']} -map 0:v -map 1:a -y -v quiet -shortest {out_fname}") | |
if ret != 0: # 没有成功从drv_audio_name里面提取到音频, 则直接输出无音频轨道的纯视频 | |
os.system(f"mv {debug_name} {out_fname}") | |
print(f"Saved at {out_fname}") | |
return out_fname | |
def forward_system(self, batch, inp): | |
self.forward_audio2secc(batch, inp) | |
out_fname = self.forward_secc2video(batch, inp) | |
return out_fname | |
def example_run(cls, inp=None): | |
inp_tmp = { | |
'drv_audio_name': 'data/raw/val_wavs/zozo.wav', | |
'src_image_name': 'data/raw/val_imgs/Macron.png' | |
} | |
if inp is not None: | |
inp_tmp.update(inp) | |
inp = inp_tmp | |
infer_instance = cls(inp['a2m_ckpt'], inp['head_ckpt'], inp['torso_ckpt'], inp=inp) | |
infer_instance.infer_once(inp) | |
############## | |
# IO-related | |
############## | |
def save_wav16k(self, audio_name): | |
supported_types = ('.wav', '.mp3', '.mp4', '.avi') | |
assert audio_name.endswith(supported_types), f"Now we only support {','.join(supported_types)} as audio source!" | |
import uuid | |
wav16k_name = audio_name[:-4] + f'{uuid.uuid1()}_16k.wav' | |
self.wav16k_name = wav16k_name | |
extract_wav_cmd = f"ffmpeg -i {audio_name} -f wav -ar 16000 -v quiet -y {wav16k_name} -y" | |
# extract_wav_cmd = f"ffmpeg -i {audio_name} -f wav -ar 16000 -y {wav16k_name} -y" | |
print(extract_wav_cmd) | |
os.system(extract_wav_cmd) | |
print(f"Extracted wav file (16khz) from {audio_name} to {wav16k_name}.") | |
def get_f0(self, wav16k_name): | |
from data_gen.utils.process_audio.extract_mel_f0 import extract_mel_from_fname, extract_f0_from_wav_and_mel | |
wav, mel = extract_mel_from_fname(self.wav16k_name) | |
f0, f0_coarse = extract_f0_from_wav_and_mel(wav, mel) | |
f0 = f0.reshape([-1,1]) | |
return f0 | |
if __name__ == '__main__': | |
import argparse, glob, tqdm | |
parser = argparse.ArgumentParser() | |
# parser.add_argument("--a2m_ckpt", default='checkpoints/240112_audio2secc/icl_audio2secc_vox2_cmlr') # checkpoints/0727_audio2secc/audio2secc_withlm2d100_randomframe | |
parser.add_argument("--a2m_ckpt", default='checkpoints/240126_real3dportrait_orig/audio2secc_vae') # checkpoints/0727_audio2secc/audio2secc_withlm2d100_randomframe | |
parser.add_argument("--head_ckpt", default='') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage | |
# parser.add_argument("--head_ckpt", default='checkpoints/240210_os_secc2plane/secc2plane_trigridv2_blink0.3_pertubeNone') # checkpoints/0729_th1kh/secc_img2plane checkpoints/0720_img2planes/secc_img2plane_two_stage | |
# parser.add_argument("--torso_ckpt", default='') | |
# parser.add_argument("--torso_ckpt", default='checkpoints/240209_robust_secc2plane_torso/secc2plane_torso_orig_fuseV1_MulMaskFalse') | |
parser.add_argument("--torso_ckpt", default='checkpoints/240211_robust_secc2plane_torso/secc2plane_torso_orig_fuseV3_MulMaskTrue') | |
# parser.add_argument("--torso_ckpt", default='checkpoints/240209_robust_secc2plane_torso/secc2plane_torso_orig_fuseV2_MulMaskTrue') | |
# parser.add_argument("--src_img", default='data/raw/val_imgs/Macron_img.png') | |
# parser.add_argument("--src_img", default='gf2_iclr_test_data/cross_imgs/Trump.png') | |
parser.add_argument("--src_img", default='data/raw/val_imgs/mercy.png') | |
parser.add_argument("--bg_img", default='') # data/raw/val_imgs/bg3.png | |
parser.add_argument("--drv_aud", default='data/raw/val_wavs/yiwise.wav') | |
parser.add_argument("--drv_pose", default='infer_out/240319_tta/trump.mp4') # nearest | topk | random | static | vid_name | |
# parser.add_argument("--drv_pose", default='nearest') # nearest | topk | random | static | vid_name | |
parser.add_argument("--drv_style", default='') # nearest | topk | random | static | vid_name | |
# parser.add_argument("--drv_style", default='infer_out/240319_tta/trump.mp4') # nearest | topk | random | static | vid_name | |
parser.add_argument("--blink_mode", default='period') # none | period | |
parser.add_argument("--temperature", default=0.2, type=float) # nearest | random | |
parser.add_argument("--denoising_steps", default=20, type=int) # nearest | random | |
parser.add_argument("--cfg_scale", default=2.5, type=float) # nearest | random | |
parser.add_argument("--mouth_amp", default=0.4, type=float) # scale of predicted mouth, enabled in audio-driven | |
parser.add_argument("--min_face_area_percent", default=0.2, type=float) # scale of predicted mouth, enabled in audio-driven | |
parser.add_argument("--head_torso_threshold", default=0.5, type=float, help="0.1~1.0, 如果发现头发有半透明的现象,调小该值,以将小weights的头发直接clamp到weights=1.0; 如果发现头外部有荧光色的虚影,调小这个值. 对不同超参的Nerf也是case-to-case") | |
# parser.add_argument("--head_torso_threshold", default=None, type=float, help="0.1~1.0, 如果发现头发有半透明的现象,调小该值,以将小weights的头发直接clamp到weights=1.0; 如果发现头外部有荧光色的虚影,调小这个值. 对不同超参的Nerf也是case-to-case") | |
parser.add_argument("--out_name", default='') # nearest | random | |
parser.add_argument("--out_mode", default='concat_debug') # concat_debug | debug | final | |
parser.add_argument("--hold_eye_opened", default='False') # concat_debug | debug | final | |
parser.add_argument("--map_to_init_pose", default='True') # concat_debug | debug | final | |
parser.add_argument("--seed", default=None, type=int) # random seed, default None to use time.time() | |
parser.add_argument("--fp16", action='store_true') | |
args = parser.parse_args() | |
inp = { | |
'a2m_ckpt': args.a2m_ckpt, | |
'head_ckpt': args.head_ckpt, | |
'torso_ckpt': args.torso_ckpt, | |
'src_image_name': args.src_img, | |
'bg_image_name': args.bg_img, | |
'drv_audio_name': args.drv_aud, | |
'drv_pose_name': args.drv_pose, | |
'drv_talking_style_name': args.drv_style, | |
'blink_mode': args.blink_mode, | |
'temperature': args.temperature, | |
'mouth_amp': args.mouth_amp, | |
'out_name': args.out_name, | |
'out_mode': args.out_mode, | |
'map_to_init_pose': args.map_to_init_pose, | |
'hold_eye_opened': args.hold_eye_opened, | |
'head_torso_threshold': args.head_torso_threshold, | |
'min_face_area_percent': args.min_face_area_percent, | |
'denoising_steps': args.denoising_steps, | |
'cfg_scale': args.cfg_scale, | |
'seed': args.seed, | |
'fp16': args.fp16, # 目前的ckpt使用fp16会导致nan,发现是因为i2p模型的layernorm产生了单个nan导致的,在训练阶段也采用fp16可能可以解决这个问题 | |
} | |
GeneFace2Infer.example_run(inp) |