Spaces:
Build error
Build error
#! /usr/bin/python | |
# -*- encoding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from utils.commons.hparams import hparams | |
import numpy as np | |
import math | |
class LossScale(nn.Module): | |
def __init__(self, init_w=10.0, init_b=-5.0): | |
super(LossScale, self).__init__() | |
self.wC = nn.Parameter(torch.tensor(init_w)) | |
self.bC = nn.Parameter(torch.tensor(init_b)) | |
class CLIPLoss(nn.Module): | |
def __init__(self,): | |
super().__init__() | |
def forward(self, audio_features, motion_features, logit_scale, clip_mask=None): | |
logits_per_audio = logit_scale * audio_features @ motion_features.T # [b,c] | |
logits_per_motion = logit_scale * motion_features @ audio_features.T # [b,c] | |
if clip_mask is not None: | |
logits_per_audio += clip_mask | |
logits_per_motion += clip_mask | |
labels = torch.arange(logits_per_motion.shape[0]).to(logits_per_motion.device) | |
motion_loss = F.cross_entropy(logits_per_motion, labels) | |
audio_loss = F.cross_entropy(logits_per_audio, labels) | |
clip_loss = (motion_loss + audio_loss) / 2 | |
ret = { | |
"audio_loss": audio_loss, | |
"motion_loss": motion_loss, | |
"clip_loss": clip_loss | |
} | |
return ret | |
def accuracy(output, target, topk=(1,)): | |
"""Computes the precision@k for the specified values of k""" | |
maxk = max(topk) | |
batch_size = target.size(0) | |
_, pred = output.topk(maxk, 1, True, True) | |
pred = pred.t() | |
correct = pred.eq(target.reshape(1, -1).expand_as(pred)) | |
res = [] | |
for k in topk: | |
correct_k = correct[:k].reshape(-1).float() | |
res.append(correct_k) | |
return res | |
class LossScale(nn.Module): | |
def __init__(self, init_w=10.0, init_b=-5.0): | |
super(LossScale, self).__init__() | |
self.wC = nn.Parameter(torch.tensor(init_w)) | |
self.bC = nn.Parameter(torch.tensor(init_b)) | |
class SyncNetModel(nn.Module): | |
def __init__(self, auddim=1024, lipdim=20*3, nOut = 1024, stride=1): | |
super(SyncNetModel, self).__init__() | |
self.loss_scale = LossScale() | |
self.criterion = torch.nn.CrossEntropyLoss(reduction='none') | |
self.clip_loss_fn = CLIPLoss() | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
self.logit_scale_max = math.log(1. / 0.01) | |
self.netcnnaud = nn.Sequential( | |
nn.Conv1d(auddim, 512, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.MaxPool1d(kernel_size=3, stride=1), | |
nn.Conv1d(512, 512, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.MaxPool1d(kernel_size=3, stride=1), | |
nn.Conv1d(512, 512, kernel_size=3, padding=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(512, 256, kernel_size=3, padding=1), | |
nn.BatchNorm1d(256), | |
nn.ReLU(inplace=True), | |
nn.MaxPool1d(kernel_size=3, stride=1), | |
nn.Conv1d(256, 256, kernel_size=3, padding=1), | |
nn.BatchNorm1d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(256, 512, kernel_size=3, padding=1, stride=(stride)), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.MaxPool1d(kernel_size=3, stride=1), | |
nn.Conv1d(512, 512, kernel_size=2), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.Conv1d(512, 512, kernel_size=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.Conv1d(512, nOut, kernel_size=1), | |
) | |
self.netcnnlip = nn.Sequential( | |
nn.Conv1d(lipdim, 512, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(512, 512, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.MaxPool1d(kernel_size=3, stride=1), | |
nn.Conv1d(512, 512, kernel_size=3, padding=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(512, 256, kernel_size=3, padding=1), | |
nn.BatchNorm1d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(256, 256, kernel_size=3, padding=1), | |
nn.BatchNorm1d(256), | |
nn.ReLU(inplace=True), | |
nn.Conv1d(256, 512, kernel_size=(3), padding=1, stride=(stride)), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.MaxPool1d(kernel_size=3, stride=1), | |
nn.Conv1d(512, 512, kernel_size=1), | |
nn.BatchNorm1d(512), | |
nn.ReLU(), | |
nn.Conv1d(512, nOut, kernel_size=1), | |
) | |
def _forward_aud(self, x): | |
# bct | |
out = self.netcnnaud(x); # N x ch x 24 x M | |
return out | |
def _forward_vid(self, x): | |
# bct | |
out = self.netcnnlip(x); | |
return out | |
def forward(self, hubert, mouth_lm): | |
# hubert := (B, T=100, C=1024) | |
# mouth_lm3d := (B, T=50, C=60) | |
# out: [B, T=50, C=1024] | |
hubert = hubert.transpose(1,2) | |
mouth_lm = mouth_lm.transpose(1,2) | |
mouth_embedding = self._forward_vid(mouth_lm) | |
audio_embedding = self._forward_aud(hubert) | |
audio_embedding = audio_embedding.transpose(1,2) | |
mouth_embedding = mouth_embedding.transpose(1,2) | |
if hparams.get('normalize_embedding', False): # similar loss, no effects | |
audio_embedding = F.normalize(audio_embedding, p=2, dim=-1) | |
mouth_embedding = F.normalize(mouth_embedding, p=2, dim=-1) | |
return audio_embedding.squeeze(1), mouth_embedding.squeeze(1) | |
def _compute_sync_loss_batch(self, out_a, out_v, ymask=None): | |
b, t, c = out_v.shape | |
label = torch.arange(t).to(out_v.device)[None].repeat(b, 1) | |
output = F.cosine_similarity( | |
out_v[:, :, None], out_a[:, None, :], dim=-1) * self.loss_scale.wC + self.loss_scale.bC | |
loss = self.criterion(output, label).mean() | |
return loss | |
def _compute_sync_loss(self, out_a, out_v, ymask=None): | |
# b,t,c | |
b, t, c = out_v.shape | |
out_v = out_v.transpose(1,2) | |
out_a = out_a.transpose(1,2) | |
label = torch.arange(t).to(out_v.device) | |
nloss = 0 | |
prec1 = 0 | |
if ymask is not None: | |
total_num = ymask.sum() | |
else: | |
total_num = b*t | |
for i in range(0, b): | |
ft_v = out_v[[i],:,:].transpose(2,0) | |
ft_a = out_a[[i],:,:].transpose(2,0) | |
output = F.cosine_similarity(ft_v, ft_a.transpose(0,2)) * self.loss_scale.wC + self.loss_scale.bC | |
loss = self.criterion(output, label) | |
if ymask is not None: | |
loss = loss * ymask[i] | |
nloss += loss.sum() | |
nloss = nloss / total_num | |
return nloss | |
def compute_sync_loss(self,out_a, out_v, ymask=None, batch_mode=False): | |
if batch_mode: | |
return self._compute_sync_loss_batch(out_a, out_v) | |
else: | |
return self._compute_sync_loss(out_a, out_v) | |
def compute_sync_score_for_infer(self, out_a, out_v, ymask=None): | |
# b,t,c | |
b, t, c = out_v.shape | |
out_v = out_v.transpose(1,2) | |
out_a = out_a.transpose(1,2) | |
label = torch.arange(t).to(out_v.device) | |
nloss = 0 | |
prec1 = 0 | |
if ymask is not None: | |
total_num = ymask.sum() | |
else: | |
total_num = b*t | |
for i in range(0, b): | |
ft_v = out_v[[i],:,:].transpose(2,0) | |
ft_a = out_a[[i],:,:].transpose(2,0) | |
output = F.cosine_similarity(ft_v, ft_a.transpose(0,2)) * self.loss_scale.wC + self.loss_scale.bC | |
loss = self.criterion(output, label) | |
if ymask is not None: | |
loss = loss * ymask[i] | |
nloss += loss.sum() | |
nloss = nloss / total_num | |
return nloss | |
def cal_clip_loss(self, audio_embedding, mouth_embedding): | |
logit_scale = torch.clamp(self.logit_scale, max=self.logit_scale_max).exp() | |
clip_ret = self.clip_loss_fn(audio_embedding, mouth_embedding, logit_scale) | |
loss = clip_ret['clip_loss'] | |
return loss | |
if __name__ == '__main__': | |
syncnet = SyncNetModel() | |
aud = torch.randn([2, 10, 1024]) | |
vid = torch.randn([2, 5, 60]) | |
aud_feat, vid_feat = syncnet.forward(aud, vid) | |
print(aud_feat.shape) | |
print(vid_feat.shape) |