Spaces:
Build error
Build error
import face_alignment | |
import os | |
import cv2 | |
import skimage.transform as trans | |
import argparse | |
import torch | |
import numpy as np | |
import tqdm | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def get_affine(src): | |
dst = np.array([[87, 59], | |
[137, 59], | |
[112, 120]], dtype=np.float32) | |
tform = trans.SimilarityTransform() | |
tform.estimate(src, dst) | |
M = tform.params[0:2, :] | |
return M | |
def affine_align_img(img, M, crop_size=224): | |
warped = cv2.warpAffine(img, M, (crop_size, crop_size), borderValue=0.0) | |
return warped | |
def affine_align_3landmarks(landmarks, M): | |
new_landmarks = np.concatenate([landmarks, np.ones((3, 1))], 1) | |
affined_landmarks = np.matmul(new_landmarks, M.transpose()) | |
return affined_landmarks | |
def get_eyes_mouths(landmark): | |
three_points = np.zeros((3, 2)) | |
three_points[0] = landmark[36:42].mean(0) | |
three_points[1] = landmark[42:48].mean(0) | |
three_points[2] = landmark[60:68].mean(0) | |
return three_points | |
def get_mouth_bias(three_points): | |
bias = np.array([112, 120]) - three_points[2] | |
return bias | |
def align_folder(folder_path, folder_save_path): | |
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device=device) | |
preds = fa.get_landmarks_from_directory(folder_path) | |
sumpoints = 0 | |
three_points_list = [] | |
for img in tqdm.tqdm(preds.keys(), desc='preprocessing..'): | |
pred_points = np.array(preds[img]) | |
if pred_points is None or len(pred_points.shape) != 3: | |
print('preprocessing failed') | |
return False | |
else: | |
num_faces, size, _ = pred_points.shape | |
if num_faces == 1 and size == 68: | |
three_points = get_eyes_mouths(pred_points[0]) | |
sumpoints += three_points | |
three_points_list.append(three_points) | |
else: | |
print('preprocessing failed') | |
return False | |
avg_points = sumpoints / len(preds) | |
M = get_affine(avg_points) | |
p_bias = None | |
for i, img_pth in tqdm.tqdm(enumerate(preds.keys()), desc='affine and save'): | |
three_points = three_points_list[i] | |
affined_3landmarks = affine_align_3landmarks(three_points, M) | |
bias = get_mouth_bias(affined_3landmarks) | |
if p_bias is None: | |
bias = bias | |
else: | |
bias = p_bias * 0.2 + bias * 0.8 | |
p_bias = bias | |
M_i = M.copy() | |
M_i[:, 2] = M[:, 2] + bias | |
img = cv2.imread(img_pth) | |
wrapped = affine_align_img(img, M_i) | |
img_save_path = os.path.join(folder_save_path, img_pth.split('/')[-1]) | |
cv2.imwrite(img_save_path, wrapped) | |
print('cropped files saved at {}'.format(folder_save_path)) | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--folder_path', help='the folder which needs processing') | |
args = parser.parse_args() | |
if os.path.isdir(args.folder_path): | |
home_path = '/'.join(args.folder_path.split('/')[:-1]) | |
save_img_path = os.path.join(home_path, args.folder_path.split('/')[-1] + '_cropped') | |
os.makedirs(save_img_path, exist_ok=True) | |
align_folder(args.folder_path, save_img_path) | |
if __name__ == '__main__': | |
main() | |