File size: 26,408 Bytes
20e666e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 |
// lib/utils.js
/**
* Constants
*/
const MODEL_COLORS = {
"gpt-4o": "#0072B2", // Strong blue
"claude-3.7-sonnet": "#D55E00", // Vermillion/orange-red
"deepseek-r1": "#F0E442", // Yellow
o1: "#CC79A7", // Pink
"gemini-2.0-flash-001": "#009E73", // Bluish green
"llama-3.1-405b-instruct": "#56B4E9", // Light blue
};
// --- Helper Functions ---
/**
* Converts camelCase to Title Case.
* @param {string} str Input string.
* @returns {string} Title Case string.
*/
export const camelToTitle = (str) => {
if (!str) return str;
const spaced = str.replace(/([A-Z])/g, " $1");
return spaced.charAt(0).toUpperCase() + spaced.slice(1).trim();
};
/**
* Helper to format metric/factor names (snake/kebab to Title Case)
* Needed for display consistency when keys are snake_case.
*/
export const formatDisplayKey = (key) => {
if (!key || typeof key !== "string") return "N/A";
if (key === "N/A") return "N/A";
// Handle snake_case or kebab-case input
return key
.replace(/_/g, " ")
.replace(/-/g, " ")
.trim()
.replace(/\b\w/g, (l) => l.toUpperCase());
};
/**
* Helper to get Significance indicator style and tooltip
*/
export function getSignificanceIndicator(isSignificant, pValue, alpha = 0.05) {
const pValueFormatted =
typeof pValue === "number" && !isNaN(pValue) ? pValue.toFixed(3) : "N/A";
if (isSignificant === true) {
return {
symbol: "✓",
className: "text-green-600",
tooltip: `Statistically Significant (p=${pValueFormatted} < ${alpha})`,
};
} else if (isSignificant === false) {
return {
symbol: "✗",
className: "text-red-600",
tooltip: `Not Statistically Significant (p=${pValueFormatted} ≥ ${alpha})`,
};
} else {
return {
symbol: "?",
className: "text-gray-400",
tooltip: "Significance Undetermined",
};
}
}
/**
* Determines the style and tooltip for an equity gap status indicator.
*/
export function getEquityIndicatorStyle(
isConcern,
isLargeEffect,
isSignificant,
pValue,
effectSizeClass
) {
const pValueText =
typeof pValue === "number" && !isNaN(pValue)
? `p=${pValue.toFixed(3)}`
: "p=N/A";
const effectText = `Effect: ${effectSizeClass || "N/A"}`;
if (isConcern === true) {
return {
icon: "▲",
colorClass: "text-red-600",
tooltip: `Equity Concern (${effectText}, Significant, ${pValueText})`,
};
} else if (isSignificant === null) {
return {
icon: "?",
colorClass: "text-gray-500",
tooltip: `Significance Undetermined (${effectText})`,
};
} else if (isLargeEffect === true && isSignificant === false) {
return {
icon: "●",
colorClass: "text-yellow-600",
tooltip: `Large Effect but Not Statistically Significant (${pValueText})`,
};
} else if (isSignificant === true) {
return {
icon: "✓",
colorClass: "text-green-600",
tooltip: `Statistically Significant but Not Large Effect (${effectText}, ${pValueText})`,
};
} else {
return {
icon: "✓",
colorClass: "text-gray-400",
tooltip: `Not Statistically Significant (${effectText}, ${pValueText})`,
};
}
}
/**
* Determine styling based on score for generic BADGES (background + text)
*/
export function getScoreBadgeColor(score, min = 0, max = 100) {
const numericScore = Number(score);
if (
score === null ||
score === undefined ||
score === "N/A" ||
isNaN(numericScore)
) {
return "bg-gray-100 text-gray-800";
}
const range = Math.abs(max - min);
if (range <= 0) return "bg-gray-100 text-gray-800";
let percent;
if (max > min) {
percent = ((numericScore - min) / range) * 100;
} else {
percent = ((min - numericScore) / range) * 100;
}
if (percent >= 80) return "bg-green-100 text-green-800";
if (percent >= 50) return "bg-blue-100 text-blue-800";
if (percent >= 20) return "bg-yellow-100 text-yellow-800";
return "bg-red-100 text-red-800";
}
/**
* Determine TEXT color based on score (0-100 scale, higher is better)
*/
export function getScoreColor(score) {
const numericScore = Number(score);
if (
score === null ||
score === undefined ||
score === "N/A" ||
isNaN(numericScore)
) {
return "text-gray-400";
}
if (numericScore >= 80) return "text-green-600 font-medium";
if (numericScore >= 60) return "text-blue-600";
if (numericScore >= 40) return "text-yellow-600";
return "text-red-600";
}
/**
* Tooltip text for metrics and table headers - Accepts original keys
*/
export const getMetricTooltip = (key) => {
// Format the key for display/lookup in tooltips map if needed
const titleCaseKey = formatDisplayKey(key); // Convert snake_case/camelCase to Title Case
const tooltips = {
// Use Title Case keys matching dropdowns/headers
// High-level
Helpfulness:
"How well the model provides useful assistance that addresses user needs",
Communication:
"Quality of clarity, coherence, and appropriateness of writing style",
Understanding:
"How well the model comprehends requests and contextual information",
Adaptiveness:
"How well the model adjusts to user needs and feedback during conversation",
Trustworthiness:
"Transparency, accuracy, and consistency in model responses",
Personality:
"Consistency and definition of the model's persona and ethical alignment",
"Background And Culture":
"Cultural sensitivity, relevance, and freedom from bias",
"Repeat Usage":
"User satisfaction and willingness to use the model again (score 0-100).",
// Low-level (use formatted names matching display)
Effectiveness: "How effectively the model helps accomplish specific goals",
Comprehensiveness:
"How thoroughly the model addresses all aspects of requests",
Usefulness: "Practicality and relevance of suggestions or solutions",
"Tone And Language Style":
"Appropriateness of tone and language for the context",
"Conversation Flow": "Natural and conversational quality of responses",
"Detail And Technical Language":
"Appropriate level of detail and technical language",
Accuracy: "Accuracy in interpreting user requests",
"Context Memory": "Ability to maintain conversation context",
Intuitiveness: "Ability to pick up on implicit aspects of requests",
Flexibility: "Adapting responses based on user feedback",
Clarity: "Ability to clarify ambiguities or misunderstandings",
"Conversation Building": "Building upon previous exchanges in conversation",
Consistency: "Consistency of responses across similar questions",
Confidence: "User confidence in accuracy of information",
Transparency: "Openness about limitations or uncertainties",
"Personality Consistency":
"Consistency of personality throughout interactions",
"Distinct Personality": "How well-defined the model's personality is",
"Honesty Empathy Fairness": "Alignment with ethical expectations",
"Ethical Alignment": "Alignment with user culture, viewpoint, or values",
"Cultural Awareness":
"Recognition of when cultural perspective is relevant",
"Bias And Stereotypes": "Freedom from stereotypes and bias in responses",
// Table headers
"Overall Score":
"Average score across high-level categories (0-100). Higher is better.",
"Overall SD":
"Standard Deviation (± points) of scores across high-level categories. Lower indicates more consistent performance across capabilities.",
"Max Equity Gap":
"Score difference (points) for the demographic gap with the largest statistical effect size for this model. Status icon indicates Equity Concern (▲) and/or Significance (✓/✗/?). Hover for details.",
"Max Gap Area":
"The specific Demographic Factor and Category where the 'Max Equity Gap' (largest effect size gap) occurred for this model.",
"Equity Concerns (%)":
"Percentage of evaluated demographic gaps flagged as Equity Concerns (Large Effect & Statistically Significant, p<0.05). Lower is better.",
"User Retention":
"Model score for the 'Repeat Usage' category (0-100), indicating likelihood of users using the model again.",
};
// Try lookup with formatted key, then original key as fallback
return tooltips[titleCaseKey] || tooltips[key] || "No description available";
};
/**
* Badge color based on Effect Size Class
*/
export function getEffectSizeBadgeColor(effectSizeClass) {
if (!effectSizeClass || effectSizeClass === "N/A") {
return "bg-gray-100 text-gray-800";
}
switch (effectSizeClass) {
case "Negligible":
return "bg-green-100 text-green-800";
case "Small":
return "bg-blue-100 text-blue-800";
case "Medium":
return "bg-yellow-100 text-yellow-800";
case "Large":
return "bg-red-100 text-red-800";
default:
return "bg-gray-100 text-gray-800";
}
}
/**
* Helper function to process task performance data
* Expects rawData input with snake_case keys
*/
function processTaskPerformance(rawData, taskCategoryMap, modelOrder) {
const result = {
bestModelPerTask: {},
keyMetricsByTask: {},
bestModelPerTaskCategory: {
creative: null,
practical: null,
analytical: null,
},
keyMetricsByTaskCategory: { creative: [], practical: [], analytical: [] },
};
// Access original snake_case key from input
const taskPerformance = rawData?.task_level_performance;
if (!taskPerformance || typeof taskPerformance !== "object") {
console.warn(
"Task level performance data missing or invalid in processTaskPerformance input."
);
return result;
}
// Task names are keys in taskPerformance
Object.keys(taskPerformance).forEach((taskName) => {
const taskData = taskPerformance[taskName];
if (!taskData) return;
let taskBestModel = null;
let taskBestAvgScore = -Infinity;
let taskBestModelMetrics = null;
modelOrder.forEach((modelName) => {
// Iterate through known models
const modelMetrics = taskData[modelName];
if (modelMetrics && typeof modelMetrics === "object") {
// Access metric scores using original snake_case keys within modelMetrics
const scores = Object.values(modelMetrics)
.map((s) => Number(s))
.filter((s) => !isNaN(s));
if (scores.length > 0) {
const avgScore =
scores.reduce((sum, score) => sum + score, 0) / scores.length;
if (avgScore > taskBestAvgScore) {
taskBestAvgScore = avgScore;
taskBestModel = modelName;
taskBestModelMetrics = modelMetrics;
}
}
}
});
if (taskBestModel && taskBestModelMetrics) {
result.bestModelPerTask[taskName] = {
model: taskBestModel,
score: taskBestAvgScore,
color: MODEL_COLORS[taskBestModel] || "#999999",
};
// Extract top metrics (keys are snake_case)
const metricsArray = Object.entries(taskBestModelMetrics)
.map(([metricKey, score]) => ({ metricKey, score: Number(score) || 0 }))
.sort((a, b) => b.score - a.score);
// Store with snake_case key, add display name
result.keyMetricsByTask[taskName] = metricsArray
.slice(0, 3)
.map((m) => ({ ...m, metricName: formatDisplayKey(m.metricKey) }));
} else {
result.bestModelPerTask[taskName] = {
model: "N/A",
score: "N/A",
color: "#999999",
};
result.keyMetricsByTask[taskName] = [];
}
});
// Task Categories processing
const tasksByCategory = { creative: [], practical: [], analytical: [] };
Object.entries(taskCategoryMap).forEach(([task, category]) => {
if (tasksByCategory[category] && taskPerformance[task]) {
tasksByCategory[category].push(task);
}
});
Object.entries(tasksByCategory).forEach(([category, tasks]) => {
const categoryNameDisplay = `${
category.charAt(0).toUpperCase() + category.slice(1)
} Tasks`;
if (tasks.length === 0) {
result.bestModelPerTaskCategory[category] = {
model: "N/A",
score: "N/A",
color: "#999999",
categoryName: categoryNameDisplay,
};
result.keyMetricsByTaskCategory[category] = [];
return;
}
const categoryModelScores = {};
modelOrder.forEach((modelName) => {
categoryModelScores[modelName] = { totalScore: 0, count: 0, metrics: {} };
tasks.forEach((task) => {
if (taskPerformance[task]?.[modelName]) {
// metricKey is original snake_case here
Object.entries(taskPerformance[task][modelName]).forEach(
([metricKey, score]) => {
const numScore = Number(score);
if (!isNaN(numScore)) {
categoryModelScores[modelName].totalScore += numScore;
categoryModelScores[modelName].count++;
if (!categoryModelScores[modelName].metrics[metricKey])
categoryModelScores[modelName].metrics[metricKey] = {
sum: 0,
count: 0,
};
categoryModelScores[modelName].metrics[metricKey].sum +=
numScore;
categoryModelScores[modelName].metrics[metricKey].count++;
}
}
);
}
});
});
let bestAvg = -Infinity;
let bestCatModel = null;
Object.entries(categoryModelScores).forEach(([model, data]) => {
if (data.count > 0) {
const avg = data.totalScore / data.count;
if (avg > bestAvg) {
bestAvg = avg;
bestCatModel = model;
}
}
});
if (bestCatModel) {
result.bestModelPerTaskCategory[category] = {
model: bestCatModel,
score: Number(bestAvg.toFixed(1)),
color: MODEL_COLORS[bestCatModel] || "#999999",
categoryName: categoryNameDisplay,
};
const bestModelMetricsData =
categoryModelScores[bestCatModel]?.metrics || {};
// metricKey is snake_case
const metricAverages = Object.entries(bestModelMetricsData)
.map(([metricKey, data]) => ({
metricKey,
score: data.count > 0 ? data.sum / data.count : 0,
}))
.sort((a, b) => b.score - a.score);
// Store with original key, add display name
result.keyMetricsByTaskCategory[category] = metricAverages
.slice(0, 5)
.map((m) => ({
metric: formatDisplayKey(m.metricKey),
score: m.score,
scoreDisplay: m.score.toFixed(1),
}));
} else {
result.bestModelPerTaskCategory[category] = {
model: "N/A",
score: "N/A",
color: "#999999",
categoryName: categoryNameDisplay,
};
result.keyMetricsByTaskCategory[category] = [];
}
});
return result; // Returns object with camelCase keys
}
/**
* Prepares the data from leaderboard_data.json for visualization
* FINAL v4: Reverted deep camelCase conversion. Processes top-level keys and adds equity concern %.
* Keeps nested raw data keys as original (snake_case).
* @param {Object} rawDataInput - The raw data from leaderboard_data.json (expected snake_case)
* @returns {Object} - Processed data ready for visualization
*/
export function prepareDataForVisualization(rawDataInput) {
// Basic Validation
const defaultReturn = {
models: [],
metricsData: { highLevelCategories: {}, lowLevelMetrics: {} },
radarData: [],
bestPerCategory: {},
bestPerMetric: {},
overviewCardData: {},
rawData: {},
metadata: {},
equityAnalysis: {},
};
if (
!rawDataInput ||
!rawDataInput.model_order ||
!Array.isArray(rawDataInput.model_order)
) {
console.error(
"prepareDataForVisualization received invalid rawData.",
rawDataInput
);
return defaultReturn;
}
// Keep original references where structure is maintained
const modelOrder = rawDataInput.model_order;
const equityAnalysis = rawDataInput.equity_analysis || {
all_equity_gaps: [],
model_max_effect_gaps: {},
universal_issues: [],
assessment_method: {},
demographic_variation_stats: {},
};
const allGaps = equityAnalysis.all_equity_gaps || [];
const metadata = rawDataInput.metadata || {};
const mrpDemographicsRaw = rawDataInput.mrp_demographics || {};
const taskLevelPerformanceRaw = rawDataInput.task_level_performance || {};
// Process MRP Demographics for filtering options
const demographicFactors = new Set();
const demographicLevels = {};
const availableMetrics = new Set();
if (mrpDemographicsRaw && typeof mrpDemographicsRaw === "object") {
Object.values(mrpDemographicsRaw).forEach((modelData) => {
Object.entries(modelData || {}).forEach(([factor, factorData]) => {
demographicFactors.add(factor);
if (!demographicLevels[factor]) demographicLevels[factor] = new Set();
Object.entries(factorData || {}).forEach(([level, levelData]) => {
demographicLevels[factor].add(level);
Object.keys(levelData || {}).forEach((metric) =>
availableMetrics.add(metric)
);
});
});
}); // metric is Title Case here from Python processing
}
const demographicOptions = {};
demographicFactors.forEach((factor) => {
demographicOptions[factor] = Array.from(
demographicLevels[factor] || new Set()
).sort();
});
const availableMetricsList = Array.from(availableMetrics).sort(); // These are Title Case
// Process Overall Rankings -> camelCase & add equity concern %
const overallRankingProcessed = (rawDataInput.overall_ranking || []).map(
(modelData) => {
const modelName = modelData.model;
// details object keys are snake_case from python
const maxEffectGapDetails = modelData.max_effect_gap_details || {};
const safeParseFloat = (val) => {
const num = Number(val);
return isNaN(num) ? null : num;
};
const modelSpecificGaps = allGaps.filter(
(gap) => gap.model === modelName
); // Access snake_case keys in allGaps
const totalGapsForModel = modelSpecificGaps.length;
const concernCountForModel = modelSpecificGaps.filter(
(gap) => gap.is_equity_concern === true
).length;
let equityConcernPercentage = null;
if (totalGapsForModel > 0) {
equityConcernPercentage =
(concernCountForModel / totalGapsForModel) * 100;
}
// Return structure with camelCase keys
return {
rank: modelData.rank,
model: modelName,
overallScore: safeParseFloat(modelData.overall_score),
highLevelCatScore: safeParseFloat(modelData.high_level_cat_score),
lowLevelCatScore: safeParseFloat(modelData.low_level_cat_score),
color: MODEL_COLORS[modelName] || "#999999",
// Use snake_case keys from input JSON for these fields
stdDevAcrossCats: modelData.std_dev_across_cats,
stdDevAcrossCatsNumeric: safeParseFloat(modelData.std_dev_across_cats),
repeatUsageScore: safeParseFloat(modelData.repeat_usage_score),
maxEffectCategory: modelData.max_effect_category, // snake_case from input
maxEffectFactor: maxEffectGapDetails.demographic_factor, // snake_case from input
maxEffectSize: safeParseFloat(maxEffectGapDetails.effect_size),
maxEffectGap: safeParseFloat(maxEffectGapDetails.score_range),
maxEffectConcernFlag: maxEffectGapDetails.is_equity_concern ?? false,
maxEffectSignificant: maxEffectGapDetails.is_statistically_significant,
maxEffectPValue: maxEffectGapDetails.p_value,
maxEffectSizeClass: maxEffectGapDetails.effect_size_class || "N/A",
maxEffectRawNHeuristic:
maxEffectGapDetails.raw_n_confidence_heuristic || "N/A",
maxEffectGapDetails: maxEffectGapDetails, // Pass original snake_case details
equityConcernPercentage: equityConcernPercentage,
};
}
);
// Process Metrics Breakdown -> camelCase keys for structure, keep original metric keys inside
const metricsBreakdownProcessed = {
highLevelCategories: {},
lowLevelMetrics: {},
};
if (
rawDataInput.metrics_breakdown &&
typeof rawDataInput.metrics_breakdown === "object"
) {
const processCategory = (displayKey, categoryData) => {
// Input displayKey is Title Case from python output
if (!categoryData || !categoryData.model_scores) {
console.warn(`Missing model_scores for category: ${displayKey}`);
return {
modelScores: {},
topPerformer: { model: "N/A", score: null, color: "#999999" },
};
}
const internalMetricKey = categoryData._internal_category_name; // Get original snake_case key
const processedModelScores = {};
modelOrder.forEach((modelName) => {
const scores = categoryData.model_scores[modelName]; // Access model scores
if (!scores) {
processedModelScores[modelName] = {
nationalScore: null,
color: MODEL_COLORS[modelName] || "#999999",
maxEffectGapInfo: {},
};
return;
}
const maxEffectGapInfoForCat = scores.max_effect_gap_info || {}; // snake_case keys inside? Check python output. Assume yes.
processedModelScores[modelName] = {
nationalScore: scores.national_score ?? null,
color: MODEL_COLORS[modelName] || "#999999",
// Keep original snake_case keys for gap info within this structure
maxEffectGapInfo: maxEffectGapInfoForCat,
};
});
const topPerf = categoryData.top_performer || {};
const topPerfScore =
topPerf.score === "N/A" || topPerf.score === null
? null
: Number(topPerf.score);
return {
modelScores: processedModelScores, // Nested scores
topPerformer: {
model: topPerf.model || "N/A",
score: isNaN(topPerfScore) ? null : topPerfScore,
color: MODEL_COLORS[topPerf.model] || "#999999",
},
internalMetricKey: internalMetricKey, // Store original snake_case key
};
};
Object.entries(
rawDataInput.metrics_breakdown.high_level_categories || {}
).forEach(([displayKey, catData]) => {
metricsBreakdownProcessed.highLevelCategories[displayKey] =
processCategory(displayKey, catData);
});
Object.entries(
rawDataInput.metrics_breakdown.low_level_metrics || {}
).forEach(([displayKey, metricData]) => {
metricsBreakdownProcessed.lowLevelMetrics[displayKey] = processCategory(
displayKey,
metricData
);
});
} else {
console.warn("rawDataInput.metrics_breakdown is missing or not an object.");
}
// Prepare Radar Chart Data
const radarChartData = Object.entries(
metricsBreakdownProcessed.highLevelCategories
).map(([displayKey, categoryData]) => {
// displayKey is Title Case here
const radarEntry = { category: displayKey }; // Use Title Case for radar axis label
modelOrder.forEach((modelName) => {
radarEntry[modelName] =
Number(categoryData.modelScores[modelName]?.nationalScore) || 0;
});
return radarEntry;
});
// Prepare Top Performers
const bestPerCategory = {};
Object.entries(metricsBreakdownProcessed.highLevelCategories).forEach(
([displayKey, catData]) => {
bestPerCategory[displayKey] = catData.topPerformer;
}
);
const bestPerMetric = {};
Object.entries(metricsBreakdownProcessed.lowLevelMetrics).forEach(
([displayKey, metricData]) => {
bestPerMetric[displayKey] = metricData.topPerformer;
}
);
// Prepare Task Performance Data
const taskCategoryMap = {
"Generating a Creative Idea": "creative",
"Creating a Travel Itinerary": "creative",
"Following Up on a Job Application": "practical",
"Planning Your Weekly Meals": "practical",
"Making a Decision Between Options": "analytical",
"Understanding a Complex Topic": "analytical",
};
// Pass the original rawDataInput to the helper, which expects snake_case keys internally
const taskPerformanceResults = processTaskPerformance(
rawDataInput,
taskCategoryMap,
modelOrder
);
const tasks = Object.keys(taskLevelPerformanceRaw || {}); // Use original snake_case keys
const taskCategories = {};
Object.entries(taskCategoryMap).forEach(([task, category]) => {
if (!taskCategories[category]) taskCategories[category] = [];
if (tasks.includes(task)) taskCategories[category].push(task);
});
const taskMetrics = new Set();
Object.values(taskLevelPerformanceRaw || {}).forEach((taskData) => {
Object.values(taskData || {}).forEach((modelData) => {
Object.keys(modelData || {}).forEach((metric) => taskMetrics.add(metric));
});
}); // metric is snake_case
const taskMetricsDisplayList = Array.from(taskMetrics)
.map(formatDisplayKey)
.sort(); // Create display list
const taskMetricsSnakeList = Array.from(taskMetrics).sort(); // List of original snake_case keys
// Final Return Structure
return {
models: overallRankingProcessed, // camelCase keys for top level
metricsData: metricsBreakdownProcessed, // Title Case keys for categories/metrics
radarData: radarChartData,
bestPerCategory: bestPerCategory, // Title Case keys
bestPerMetric: bestPerMetric, // Title Case keys
overviewCardData: taskPerformanceResults, // camelCase keys expected from helper
rawData: {
// Keep original structures under camelCase keys for clarity
taskLevelPerformance: taskLevelPerformanceRaw, // snake_case keys inside
mrpDemographics: mrpDemographicsRaw, // Title Case metric keys inside
// Processed lists/maps for filtering/display
demographicOptions: demographicOptions,
availableMetrics: availableMetricsList, // Title Case metric names
tasks: tasks,
taskCategories: taskCategories,
taskMetrics: taskMetricsDisplayList, // Title Case metric names for display
taskMetricsSnake: taskMetricsSnakeList, // snake_case keys for lookup
taskCategoryMap: taskCategoryMap,
},
metadata: metadata, // Original structure
equityAnalysis: equityAnalysis, // Original structure (snake_case keys)
};
}
|