nock2 commited on
Commit
3c69c2b
Β·
verified Β·
1 Parent(s): d4a8611

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -65
app.py CHANGED
@@ -1,6 +1,4 @@
1
  import os
2
- import time
3
- import requests
4
  from huggingface_hub import login
5
  import torch
6
  import torchaudio
@@ -9,20 +7,20 @@ import gradio as gr
9
  from stable_audio_tools import get_pretrained_model
10
  from stable_audio_tools.inference.generation import generate_diffusion_cond
11
 
12
- # Authenticate Hugging Face Hub
13
  token = os.getenv("HUGGINGFACE_TOKEN")
14
  if not token:
15
  raise RuntimeError("HUGGINGFACE_TOKEN not set")
16
  login(token=token, add_to_git_credential=False)
17
 
18
- # Load audio model
19
  device = "cuda" if torch.cuda.is_available() else "cpu"
20
  model, config = get_pretrained_model("stabilityai/stable-audio-open-small")
21
  model = model.to(device)
22
  sample_rate = config["sample_rate"]
23
  sample_size = config["sample_size"]
24
 
25
- # Audio generation function
26
  def generate_audio(prompt):
27
  conditioning = [{"prompt": prompt, "seconds_total": 11}]
28
  with torch.no_grad():
@@ -39,70 +37,22 @@ def generate_audio(prompt):
39
  torchaudio.save(path, output, sample_rate)
40
  return path
41
 
42
- # Image generation function using Replicate
43
- def generate_image(prompt):
44
- replicate_token = os.getenv("REPLICATE_API_TOKEN")
45
- if not replicate_token:
46
- raise RuntimeError("REPLICATE_API_TOKEN not set")
47
-
48
- url = "https://api.replicate.com/v1/predictions"
49
- headers = {
50
- "Authorization": f"Token {replicate_token}",
51
- "Content-Type": "application/json"
52
- }
53
- data = {
54
- "version": "5ee6b41748a4e3e3d3a212ed4a29379d6a13b9265fd00fe59e28c2767a5e82eb",
55
- "input": {
56
- "prompt": prompt,
57
- "style": "surreal"
58
- }
59
- }
60
- response = requests.post(url, headers=headers, json=data)
61
- response.raise_for_status()
62
- prediction = response.json()
63
-
64
- status = prediction["status"]
65
- get_url = prediction["urls"]["get"]
66
-
67
- while status not in ["succeeded", "failed"]:
68
- time.sleep(1.5)
69
- resp = requests.get(get_url, headers=headers)
70
- prediction = resp.json()
71
- status = prediction["status"]
72
-
73
- if status != "succeeded":
74
- raise RuntimeError(f"Image generation failed: {prediction}")
75
-
76
- image_url = prediction["output"]
77
- image_path = "output.png"
78
- image_data = requests.get(image_url).content
79
- with open(image_path, "wb") as f:
80
- f.write(image_data)
81
-
82
- return image_path
83
-
84
- # Combined generation function
85
- def generate_assets(prompt):
86
- audio_path = generate_audio(prompt)
87
- image_path = generate_image(prompt)
88
- return audio_path, image_path
89
-
90
- # Gradio UI
91
  gr.Interface(
92
- fn=generate_assets,
93
  inputs=gr.Textbox(
94
- label="🎀 Prompt your sonic + visual art",
95
  placeholder="e.g. 'drunk driving with mario and yung lean'"
96
  ),
97
- outputs=[
98
- gr.Audio(type="filepath", label="🧠 Generated Audio"),
99
- gr.Image(type="filepath", label="🎨 Generated Image")
100
- ],
101
  title='🌐 Hot Prompts in Your Area: "My Husband Is Dead"',
102
- description="Enter a fun sound idea β€” generate audio *and* visual from one prompt.",
103
  examples=[
104
- "ghosts peeing",
105
- "Tech startup boss villain entrance music",
106
- "Dolphin hootin'"
107
  ]
108
- ).launch()
 
1
  import os
 
 
2
  from huggingface_hub import login
3
  import torch
4
  import torchaudio
 
7
  from stable_audio_tools import get_pretrained_model
8
  from stable_audio_tools.inference.generation import generate_diffusion_cond
9
 
10
+ # Authenticate
11
  token = os.getenv("HUGGINGFACE_TOKEN")
12
  if not token:
13
  raise RuntimeError("HUGGINGFACE_TOKEN not set")
14
  login(token=token, add_to_git_credential=False)
15
 
16
+ # Load model
17
  device = "cuda" if torch.cuda.is_available() else "cpu"
18
  model, config = get_pretrained_model("stabilityai/stable-audio-open-small")
19
  model = model.to(device)
20
  sample_rate = config["sample_rate"]
21
  sample_size = config["sample_size"]
22
 
23
+ # Inference function
24
  def generate_audio(prompt):
25
  conditioning = [{"prompt": prompt, "seconds_total": 11}]
26
  with torch.no_grad():
 
37
  torchaudio.save(path, output, sample_rate)
38
  return path
39
 
40
+ # πŸŒ€ Hot Prompt Club UI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  gr.Interface(
42
+ fn=generate_audio,
43
  inputs=gr.Textbox(
44
+ label="🎀 Prompt your sonic art here",
45
  placeholder="e.g. 'drunk driving with mario and yung lean'"
46
  ),
47
+ outputs=gr.Audio(
48
+ type="filepath",
49
+ label="🧠 Generated Audio"
50
+ ),
51
  title='🌐 Hot Prompts in Your Area: "My Husband Is Dead"',
52
+ description="Enter a fun sound idea for music art.",
53
  examples=[
54
+ "ghosts peeing in a server room",
55
+ "tech startup boss villain entrance music",
56
+ "AI doing acid in a technofeudalist dystopia"
57
  ]
58
+ ).launch()