richardaecn's picture
Upload 105 files
e19aac6 verified
raw
history blame
13.2 kB
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import argparse
from collections import defaultdict
import gc
import math
import os
from PIL import Image
import random
from tqdm import tqdm
from typing import Any, Dict, Iterable, List, Tuple
#import cv2
import numpy as np
import torch
from torch import nn
import torch.distributed as dist
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.utils import make_grid
from einops import rearrange
from datasets import load_dataset_builder, load_dataset
from datasets.distributed import split_dataset_by_node
#from common import rank_print, load_model, get_standard_transform, collate
#
#try:
# import wandb
#except ImportError:
# wandb = None
LAYER_STATS = dict()
@torch.inference_mode()
def main(rank: int = 0, world_size: int = 1):
'''
Computes the RankMe (http://arxiv.org/abs/2210.02885) and LiDAR (http://arxiv.org/abs/2312.04000)
estimates of the rank of the produced embeddings. While RADIO doesn't train in a multi-view setting
which is an assumption of LiDAR, the metric does integrate an important concept of the invariance of the
summary features to different view/augmentations of the same image.
'''
local_rank = rank % torch.cuda.device_count()
torch.cuda.set_device(local_rank)
cv2.setNumThreads(1)
device = torch.device('cuda', local_rank)
parser = argparse.ArgumentParser(description='Compute SSL embedding rank estimates')
parser.add_argument('-v', '--model-version', default='radio_v2',
help='Which radio model to load.'
)
parser.add_argument('-d', '--dataset', default='imagenet-1k',
help='The name of the dataset to classify'
)
parser.add_argument('--split', default='validation',
help='The dataset split to use.'
)
parser.add_argument('-n', default=10, type=int, help='The number of samples to load')
parser.add_argument('-r', '--resolution', nargs='+', type=int, default=None,
help='The input image resolution.'
' If one value is specified, the shortest dimension is resized to this.'
' If two, the image is center cropped.'
' If not specified, center cropped 378px is used.'
' Default: The RADIO model\'s preferred resolution.'
)
parser.add_argument('--resize-multiple', type=int, default=None,
help='Resize images with dimensions a multiple of this value.'
' This should be equal to the patch size of a ViT (e.g. RADIOv1)'
)
parser.add_argument('--batch-size', type=int, default=16,
help='The batch size. If the input is variable sized, then this argument becomes a maximum.'
)
parser.add_argument('--workers', default=8, type=int, help='Number of loader workers to use')
parser.add_argument('--vitdet-window-size', default=None, type=int, help='Enable ViTDet at the specific window size')
parser.add_argument('--output-dir', default='vis_denoise', type=str)
parser.add_argument('--adaptor-name', default=None, type=str, help='Generate features from a teacher adaptor')
args, _ = parser.parse_known_args()
torch.manual_seed(42 + rank)
np.random.seed(42 + rank)
random.seed(42 + rank)
rank_print('Loading model...')
model, preprocessor, info = load_model(args.model_version, vitdet_window_size=args.vitdet_window_size, adaptor_name=args.adaptor_name)
model.to(device=device).eval()
if isinstance(preprocessor, nn.Module):
preprocessor.to(device).eval()
rank_print('Done')
rank_print('Loading dataset...')
ds_builder = load_dataset_builder(args.dataset, trust_remote_code=True)
if args.resolution is None:
args.resolution = (model.preferred_resolution.height, model.preferred_resolution.width)
patch_size = model.patch_size
if args.resize_multiple is None:
args.resize_multiple = getattr(model, 'min_resolution_step', model.patch_size)
transform = get_standard_transform(args.resolution, args.resize_multiple)
dataset = ds_builder.as_dataset(split=args.split)
dataset = dataset.to_iterable_dataset(num_shards=world_size * max(1, args.workers))
dataset = split_dataset_by_node(dataset, rank=rank, world_size=world_size)
dataset = dataset.map(lambda ex: dict(image=transform(ex['image']), label=torch.as_tensor(ex['label'], dtype=torch.int64)))
loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, collate_fn=collate,
pin_memory=args.workers > 0,
drop_last=False,
)
rank_print('Done')
rank_print(f'Description: {ds_builder.info.description}')
dirs = dict(
orig=os.path.join(args.output_dir, 'orig'),
viz=os.path.join(args.output_dir, 'viz'),
sbs=os.path.join(args.output_dir, 'sbs'),
)
for d in dirs.values():
os.makedirs(d, exist_ok=True)
ctr = 0
for batches in loader:
if ctr >= args.n:
break
for images, _ in batches:
images = images.to(device=device, non_blocking=True)
all_feat = []
with torch.autocast(device.type, dtype=torch.bfloat16):
p_images = preprocessor(images)
output = model(p_images)
if args.adaptor_name:
all_feat = [
output['backbone'].features,
output[args.adaptor_name].features,
]
else:
all_feat = [output[1]]
all_feat = torch.stack(all_feat, dim=1)
num_rows = images.shape[-2] // patch_size
num_cols = images.shape[-1] // patch_size
all_feat = rearrange(all_feat, 'b m (h w) c -> b m h w c', h=num_rows, w=num_cols).float()
for i, feats in enumerate(all_feat):
colored = []
for features in feats:
color = get_pca_map(features, images.shape[-2:])
colored.append(color)
orig = cv2.cvtColor(images[i].permute(1, 2, 0).cpu().numpy(), cv2.COLOR_RGB2BGR)
cv2.imwrite(f'{dirs["orig"]}/vis_{ctr}.jpg', orig * 255)
cv2.imwrite(f'{dirs["viz"]}/vis_{ctr}.jpg', colored[-1] * 255)
op = np.concatenate([orig] + colored, axis=1) * 255
cv2.imwrite(f'{dirs["sbs"]}/vis_{ctr}.jpg', op)
ctr += 1
def get_robust_pca(features: torch.Tensor, m: float = 2, remove_first_component=False):
# features: (N, C)
# m: a hyperparam controlling how many std dev outside for outliers
assert len(features.shape) == 2, "features should be (N, C)"
reduction_mat = torch.pca_lowrank(features, q=3, niter=20)[2]
colors = features @ reduction_mat
if remove_first_component:
colors_min = colors.min(dim=0).values
colors_max = colors.max(dim=0).values
tmp_colors = (colors - colors_min) / (colors_max - colors_min)
fg_mask = tmp_colors[..., 0] < 0.2
reduction_mat = torch.pca_lowrank(features[fg_mask], q=3, niter=20)[2]
colors = features @ reduction_mat
else:
fg_mask = torch.ones_like(colors[:, 0]).bool()
d = torch.abs(colors[fg_mask] - torch.median(colors[fg_mask], dim=0).values)
mdev = torch.median(d, dim=0).values
s = d / mdev
try:
rins = colors[fg_mask][s[:, 0] < m, 0]
gins = colors[fg_mask][s[:, 1] < m, 1]
bins = colors[fg_mask][s[:, 2] < m, 2]
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
except:
rins = colors
gins = colors
bins = colors
rgb_min = torch.tensor([rins.min(), gins.min(), bins.min()])
rgb_max = torch.tensor([rins.max(), gins.max(), bins.max()])
return reduction_mat, rgb_min.to(reduction_mat), rgb_max.to(reduction_mat)
def get_pca_map(
feature_map: torch.Tensor,
img_size,
interpolation="bicubic",
return_pca_stats=False,
pca_stats=None,
):
"""
feature_map: (1, h, w, C) is the feature map of a single image.
"""
feature_map = feature_map.float()
if feature_map.shape[0] != 1:
# make it (1, h, w, C)
feature_map = feature_map[None]
if pca_stats is None:
reduct_mat, color_min, color_max = get_robust_pca(
feature_map.reshape(-1, feature_map.shape[-1])
)
else:
reduct_mat, color_min, color_max = pca_stats
pca_color = feature_map @ reduct_mat
pca_color = (pca_color - color_min) / (color_max - color_min)
pca_color = F.interpolate(
pca_color.permute(0, 3, 1, 2),
size=img_size,
mode=interpolation,
).permute(0, 2, 3, 1)
pca_color = pca_color.clamp(0, 1)
pca_color = pca_color.cpu().numpy().squeeze(0)
if return_pca_stats:
return pca_color, (reduct_mat, color_min, color_max)
return pca_color
def get_scale_map(
scalar_map: torch.Tensor,
img_size,
interpolation="nearest",
):
"""
scalar_map: (1, h, w, C) is the feature map of a single image.
"""
if scalar_map.shape[0] != 1:
scalar_map = scalar_map[None]
scalar_map = (scalar_map - scalar_map.min()) / (
scalar_map.max() - scalar_map.min() + 1e-6
)
scalar_map = F.interpolate(
scalar_map.permute(0, 3, 1, 2),
size=img_size,
mode=interpolation,
).permute(0, 2, 3, 1)
# cmap = plt.get_cmap("viridis")
# scalar_map = cmap(scalar_map)[..., :3]
# make it 3 channels
scalar_map = torch.cat([scalar_map] * 3, dim=-1)
scalar_map = scalar_map.cpu().numpy().squeeze(0)
return scalar_map
def get_similarity_map(features: torch.Tensor, img_size=(224, 224)):
"""
compute the similarity map of the central patch to the rest of the image
"""
assert len(features.shape) == 4, "features should be (1, C, H, W)"
H, W, C = features.shape[1:]
center_patch_feature = features[0, H // 2, W // 2, :]
center_patch_feature_normalized = center_patch_feature / center_patch_feature.norm()
center_patch_feature_normalized = center_patch_feature_normalized.unsqueeze(1)
# Reshape and normalize the entire feature tensor
features_flat = features.view(-1, C)
features_normalized = features_flat / features_flat.norm(dim=1, keepdim=True)
similarity_map_flat = features_normalized @ center_patch_feature_normalized
# Reshape the flat similarity map back to the spatial dimensions (H, W)
similarity_map = similarity_map_flat.view(H, W)
# Normalize the similarity map to be in the range [0, 1] for visualization
similarity_map = (similarity_map - similarity_map.min()) / (
similarity_map.max() - similarity_map.min()
)
# we don't want the center patch to be the most similar
similarity_map[H // 2, W // 2] = -1.0
similarity_map = (
F.interpolate(
similarity_map.unsqueeze(0).unsqueeze(0),
size=img_size,
mode="bilinear",
)
.squeeze(0)
.squeeze(0)
)
similarity_map_np = similarity_map.cpu().numpy()
negative_mask = similarity_map_np < 0
colormap = plt.get_cmap("turbo")
# Apply the colormap directly to the normalized similarity map and multiply by 255 to get RGB values
similarity_map_rgb = colormap(similarity_map_np)[..., :3]
similarity_map_rgb[negative_mask] = [1.0, 0.0, 0.0]
return similarity_map_rgb
def get_cluster_map(
feature_map: torch.Tensor,
img_size,
num_clusters=10,
) -> torch.Tensor:
kmeans = KMeans(n_clusters=num_clusters, distance=CosineSimilarity, verbose=False)
if feature_map.shape[0] != 1:
# make it (1, h, w, C)
feature_map = feature_map[None]
labels = kmeans.fit_predict(
feature_map.reshape(1, -1, feature_map.shape[-1])
).float()
labels = (
F.interpolate(
labels.reshape(1, *feature_map.shape[:-1]), size=img_size, mode="nearest"
)
.squeeze()
.cpu()
.numpy()
).astype(int)
cmap = plt.get_cmap("rainbow", num_clusters)
cluster_map = cmap(labels)[..., :3]
return cluster_map.reshape(img_size[0], img_size[1], 3)
if __name__ == '__main__':
rank = 0
world_size = 1
# if 'WORLD_SIZE' in os.environ:
# dist.init_process_group(backend='nccl')
# rank = dist.get_rank()
# world_size = dist.get_world_size()
main(rank, world_size)