Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2024 NVIDIA CORPORATION & AFFILIATES | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
import os, os.path as osp | |
from transformers import AutoConfig | |
from transformers import PretrainedConfig | |
from huggingface_hub import snapshot_download, repo_exists | |
from huggingface_hub.utils import validate_repo_id, HFValidationError | |
def get_model_config(config): | |
# `mask_encoder_cfg` and `context_provider_cfg` are optional | |
default_keys = ["llm_cfg", "vision_tower_cfg", "mm_projector_cfg", "mask_encoder_cfg", "context_provider_cfg"] | |
if hasattr(config, "_name_or_path") and len(config._name_or_path) >= 2: | |
root_path = config._name_or_path | |
else: | |
root_path = config.resume_path | |
# download from huggingface | |
if root_path is not None and not osp.exists(root_path): | |
try: | |
valid_hf_repo = repo_exists(root_path) | |
except HFValidationError as e: | |
valid_hf_repo = False | |
if valid_hf_repo: | |
root_path = snapshot_download(root_path) | |
return_list = [] | |
for key in default_keys: | |
cfg = getattr(config, key, None) | |
if isinstance(cfg, dict): | |
try: | |
return_list.append(os.path.join(root_path, key[:-4])) | |
except: | |
raise ValueError(f"Cannot find resume path in config for {key}!") | |
elif isinstance(cfg, PretrainedConfig): | |
return_list.append(os.path.join(root_path, key[:-4])) | |
elif isinstance(cfg, str): | |
return_list.append(cfg) | |
elif cfg is None: | |
# We still return even if the cfg is None or does not exist | |
return_list.append(cfg) | |
return return_list | |
def is_mm_model(model_path): | |
""" | |
Check if the model at the given path is a visual language model. | |
Args: | |
model_path (str): The path to the model. | |
Returns: | |
bool: True if the model is an MM model, False otherwise. | |
""" | |
config = AutoConfig.from_pretrained(model_path) | |
architectures = config.architectures | |
for architecture in architectures: | |
if "llava" in architecture.lower(): | |
return True | |
return False | |
def auto_upgrade(config): | |
cfg = AutoConfig.from_pretrained(config) | |
if "llava" in config and "llava" not in cfg.model_type: | |
assert cfg.model_type == "llama" | |
print( | |
"You are using newer LLaVA code base, while the checkpoint of v0 is from older code base." | |
) | |
print( | |
"You must upgrade the checkpoint to the new code base (this can be done automatically)." | |
) | |
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]") | |
if confirm.lower() in ["y", "yes"]: | |
print("Upgrading checkpoint...") | |
assert len(cfg.architectures) == 1 | |
setattr(cfg.__class__, "model_type", "llava") | |
cfg.architectures[0] = "LlavaLlamaForCausalLM" | |
cfg.save_pretrained(config) | |
print("Checkpoint upgraded.") | |
else: | |
print("Checkpoint upgrade aborted.") | |
exit(1) | |