# Copyright 2023 Haotian Liu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. PAD_TOKEN_ID = 0 from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import AutoConfig, AutoModelForCausalLM from transformers.models.gemma import GemmaConfig, GemmaModel, GemmaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from llava.constants import IGNORE_INDEX from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM # import time class LlavaGemmaConfig(GemmaConfig): model_type = "llava_gemma" class LlavaGemmaModel(GemmaModel, LlavaMetaModel): config_class = LlavaGemmaConfig def __init__(self, config: GemmaConfig): super(LlavaGemmaModel, self).__init__(config) class LlavaGemmaForCausalLM(GemmaForCausalLM, LlavaMetaForCausalLM): config_class = LlavaGemmaConfig def __init__(self, config): super(LlavaGemmaForCausalLM, self).__init__(config) self.model = LlavaGemmaModel(config) self.pretraining_tp = 1 self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def get_lm_head(self): return self.lm_head def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: ( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) = self.prepare_inputs_labels_for_multimodal( input_ids, position_ids, attention_mask, past_key_values, labels, images ) # TODO (kentang-mit@): fuse this function into the previous one. # current design makes unit-test easier. if self.training: ( _, new_position_ids, new_attention_mask, _, new_inputs_embeds, new_labels, sorted_seqlens_in_batch ) = self.repack_multimodal_data( input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels ) new_input_ids = None past_key_values = None new_cache_position = None else: new_attention_mask = attention_mask new_position_ids = position_ids new_inputs_embeds = inputs_embeds new_labels = labels if attention_mask is not None: sorted_seqlens_in_batch = attention_mask.sum(-1).int() else: sorted_seqlens_in_batch = None new_input_ids = input_ids # kentang-mit@: This only works for batch=1 currently # model.generate of gemma does not correctly handle decoding stage currently # need to manually adjust decoding stage input = 1 token if past_key_values is not None: if new_inputs_embeds is not None: new_inputs_embeds = new_inputs_embeds[:, [-1]] # kentang-mit@: seems to be a problem unique to gemma if new_position_ids is not None: new_position_ids = new_position_ids[:, [-1]] new_cache_position = new_position_ids[0] outputs = super().forward( input_ids=new_input_ids, attention_mask=new_attention_mask, position_ids=new_position_ids, past_key_values=past_key_values, inputs_embeds=new_inputs_embeds, labels=new_labels, use_cache=use_cache, cache_position=new_cache_position, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, seqlens_in_batch=sorted_seqlens_in_batch, ) return outputs def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) _inputs = super().prepare_inputs_for_generation( input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs ) if images is not None: _inputs['images'] = images return _inputs AutoConfig.register("llava_gemma", LlavaGemmaConfig) AutoModelForCausalLM.register(LlavaGemmaConfig, LlavaGemmaForCausalLM)