# This file is modified from https://github.com/haotian-liu/LLaVA/ import torch import os from transformers import AutoConfig, PretrainedConfig, PreTrainedModel from .siglip_encoder import SiglipVisionTower from .context_provider import ContextProvider, ContextProviderConfig def build_vision_tower( model_name_or_path: str, config: PretrainedConfig ) -> PreTrainedModel: ## skip vision tower instantiation if model_name_or_path is None: return None vision_tower_arch = None if config.resume_path and "radio" not in model_name_or_path: assert os.path.exists( model_name_or_path ), f"Resume vision tower path {model_name_or_path} does not exist!" vision_tower_cfg = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) vision_tower_arch = vision_tower_cfg.architectures[0].lower() vision_tower_name = ( vision_tower_arch if vision_tower_arch is not None else model_name_or_path ) if "siglip" in vision_tower_name: vision_tower = SiglipVisionTower(model_name_or_path, config) else: raise ValueError(f"Unknown vision tower: {model_name_or_path}") config.mm_hidden_size = vision_tower.config.hidden_size return vision_tower def build_context_provider( model_type_or_path: str, config: PretrainedConfig ) -> PreTrainedModel: if model_type_or_path is None: return None ## load from pretrained model if config.resume_path: assert os.path.exists( model_type_or_path ), f"Resume context provider path {model_type_or_path} does not exist!" return ContextProvider.from_pretrained( model_type_or_path, config, torch_dtype=eval(config.model_dtype) ) ## build from scratch else: mm_projector_cfg = ContextProviderConfig(model_type_or_path) mm_projector = ContextProvider(mm_projector_cfg, config).to( eval(config.model_dtype) ) return mm_projector