Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import cv2
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
10 |
+
import huggingface_hub
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
+
from PIL import Image
|
13 |
+
from torchvision.transforms.functional import normalize
|
14 |
+
from gradio_client import Client
|
15 |
+
import logging
|
16 |
+
import time
|
17 |
+
|
18 |
+
from dreamo.dreamo_pipeline import DreamOPipeline
|
19 |
+
from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img, resize_numpy_image_long
|
20 |
+
from tools import BEN2
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser()
|
23 |
+
parser.add_argument('--port', type=int, default=8080)
|
24 |
+
parser.add_argument('--no_turbo', action='store_true')
|
25 |
+
args = parser.parse_args()
|
26 |
+
|
27 |
+
huggingface_hub.login(os.getenv('HF_TOKEN'))
|
28 |
+
|
29 |
+
# Text-to-Image API URL
|
30 |
+
TEXT2IMG_API_URL = "http://211.233.58.201:7896"
|
31 |
+
|
32 |
+
# ๋ก๊น
์ค์
|
33 |
+
logging.basicConfig(
|
34 |
+
level=logging.DEBUG,
|
35 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
36 |
+
|
37 |
+
try:
|
38 |
+
shutil.rmtree('gradio_cached_examples')
|
39 |
+
except FileNotFoundError:
|
40 |
+
print("cache folder not exist")
|
41 |
+
|
42 |
+
class Generator:
|
43 |
+
def __init__(self):
|
44 |
+
device = torch.device('cuda')
|
45 |
+
# preprocessing models
|
46 |
+
# background remove model: BEN2
|
47 |
+
self.bg_rm_model = BEN2.BEN_Base().to(device).eval()
|
48 |
+
hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
|
49 |
+
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
|
50 |
+
# face crop and align tool: facexlib
|
51 |
+
self.face_helper = FaceRestoreHelper(
|
52 |
+
upscale_factor=1,
|
53 |
+
face_size=512,
|
54 |
+
crop_ratio=(1, 1),
|
55 |
+
det_model='retinaface_resnet50',
|
56 |
+
save_ext='png',
|
57 |
+
device=device,
|
58 |
+
)
|
59 |
+
|
60 |
+
# load dreamo
|
61 |
+
model_root = 'black-forest-labs/FLUX.1-dev'
|
62 |
+
dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
|
63 |
+
dreamo_pipeline.load_dreamo_model(device, use_turbo=not args.no_turbo)
|
64 |
+
self.dreamo_pipeline = dreamo_pipeline.to(device)
|
65 |
+
|
66 |
+
@torch.no_grad()
|
67 |
+
def get_align_face(self, img):
|
68 |
+
# the face preprocessing code is same as PuLID
|
69 |
+
self.face_helper.clean_all()
|
70 |
+
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
71 |
+
self.face_helper.read_image(image_bgr)
|
72 |
+
self.face_helper.get_face_landmarks_5(only_center_face=True)
|
73 |
+
self.face_helper.align_warp_face()
|
74 |
+
if len(self.face_helper.cropped_faces) == 0:
|
75 |
+
return None
|
76 |
+
align_face = self.face_helper.cropped_faces[0]
|
77 |
+
|
78 |
+
input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
|
79 |
+
input = input.to(torch.device("cuda"))
|
80 |
+
parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
81 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
82 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
83 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
84 |
+
white_image = torch.ones_like(input)
|
85 |
+
# only keep the face features
|
86 |
+
face_features_image = torch.where(bg, white_image, input)
|
87 |
+
face_features_image = tensor2img(face_features_image, rgb2bgr=False)
|
88 |
+
|
89 |
+
return face_features_image
|
90 |
+
|
91 |
+
|
92 |
+
generator = Generator()
|
93 |
+
|
94 |
+
|
95 |
+
@spaces.GPU
|
96 |
+
@torch.inference_mode()
|
97 |
+
def generate_image(
|
98 |
+
ref_image1,
|
99 |
+
ref_image2,
|
100 |
+
ref_task1,
|
101 |
+
ref_task2,
|
102 |
+
prompt,
|
103 |
+
seed,
|
104 |
+
width=1024,
|
105 |
+
height=1024,
|
106 |
+
ref_res=512,
|
107 |
+
num_steps=12,
|
108 |
+
guidance=3.5,
|
109 |
+
true_cfg=1,
|
110 |
+
cfg_start_step=0,
|
111 |
+
cfg_end_step=0,
|
112 |
+
neg_prompt='',
|
113 |
+
neg_guidance=3.5,
|
114 |
+
first_step_guidance=0,
|
115 |
+
):
|
116 |
+
print(prompt)
|
117 |
+
ref_conds = []
|
118 |
+
debug_images = []
|
119 |
+
|
120 |
+
ref_images = [ref_image1, ref_image2]
|
121 |
+
ref_tasks = [ref_task1, ref_task2]
|
122 |
+
|
123 |
+
for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)):
|
124 |
+
if ref_image is not None:
|
125 |
+
if ref_task == "id":
|
126 |
+
ref_image = resize_numpy_image_long(ref_image, 1024)
|
127 |
+
ref_image = generator.get_align_face(ref_image)
|
128 |
+
elif ref_task != "style":
|
129 |
+
ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image))
|
130 |
+
if ref_task != "id":
|
131 |
+
ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res)
|
132 |
+
debug_images.append(ref_image)
|
133 |
+
ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0
|
134 |
+
ref_image = 2 * ref_image - 1.0
|
135 |
+
ref_conds.append(
|
136 |
+
{
|
137 |
+
'img': ref_image,
|
138 |
+
'task': ref_task,
|
139 |
+
'idx': idx + 1,
|
140 |
+
}
|
141 |
+
)
|
142 |
+
|
143 |
+
seed = int(seed)
|
144 |
+
if seed == -1:
|
145 |
+
seed = torch.Generator(device="cpu").seed()
|
146 |
+
|
147 |
+
image = generator.dreamo_pipeline(
|
148 |
+
prompt=prompt,
|
149 |
+
width=width,
|
150 |
+
height=height,
|
151 |
+
num_inference_steps=num_steps,
|
152 |
+
guidance_scale=guidance,
|
153 |
+
ref_conds=ref_conds,
|
154 |
+
generator=torch.Generator(device="cpu").manual_seed(seed),
|
155 |
+
true_cfg_scale=true_cfg,
|
156 |
+
true_cfg_start_step=cfg_start_step,
|
157 |
+
true_cfg_end_step=cfg_end_step,
|
158 |
+
negative_prompt=neg_prompt,
|
159 |
+
neg_guidance_scale=neg_guidance,
|
160 |
+
first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance,
|
161 |
+
).images[0]
|
162 |
+
|
163 |
+
return image, debug_images, seed
|
164 |
+
|
165 |
+
|
166 |
+
# Video generation functions
|
167 |
+
import requests
|
168 |
+
import random
|
169 |
+
import tempfile
|
170 |
+
import subprocess
|
171 |
+
from gradio_client import Client, handle_file
|
172 |
+
|
173 |
+
REMOTE_ENDPOINT = os.getenv("H100_URL")
|
174 |
+
|
175 |
+
client = Client(REMOTE_ENDPOINT)
|
176 |
+
|
177 |
+
def run_process_video_api(image_path: str, prompt: str, video_length: float = 2.0):
|
178 |
+
seed_val = random.randint(0, 9999999)
|
179 |
+
negative_prompt = ""
|
180 |
+
use_teacache = True
|
181 |
+
|
182 |
+
result = client.predict(
|
183 |
+
input_image=handle_file(image_path),
|
184 |
+
prompt=prompt,
|
185 |
+
n_prompt=negative_prompt,
|
186 |
+
seed=seed_val,
|
187 |
+
use_teacache=use_teacache,
|
188 |
+
video_length=video_length,
|
189 |
+
api_name="/process",
|
190 |
+
)
|
191 |
+
video_dict, preview_dict, md_text, html_text = result
|
192 |
+
video_path = video_dict.get("video") if isinstance(video_dict, dict) else None
|
193 |
+
return video_path
|
194 |
+
|
195 |
+
def add_watermark_to_video(input_video_path: str, watermark_text="Ginigen.com") -> str:
|
196 |
+
if not os.path.exists(input_video_path):
|
197 |
+
raise FileNotFoundError(f"Input video not found: {input_video_path}")
|
198 |
+
|
199 |
+
base, ext = os.path.splitext(input_video_path)
|
200 |
+
watermarked_path = base + "_wm" + ext
|
201 |
+
cmd = [
|
202 |
+
"ffmpeg", "-y",
|
203 |
+
"-i", input_video_path,
|
204 |
+
"-vf", f"drawtext=fontsize=20:fontcolor=white:text='{watermark_text}':x=w-tw-10:y=h-th-10:box=1:[email protected]:boxborderw=5",
|
205 |
+
"-codec:a", "copy",
|
206 |
+
watermarked_path
|
207 |
+
]
|
208 |
+
try:
|
209 |
+
subprocess.run(cmd, check=True)
|
210 |
+
except Exception as e:
|
211 |
+
print(f"[WARN] FFmpeg watermark failed: {e}")
|
212 |
+
return input_video_path
|
213 |
+
|
214 |
+
return watermarked_path
|
215 |
+
|
216 |
+
def generate_video_from_image(image_array: np.ndarray):
|
217 |
+
if image_array is None:
|
218 |
+
raise gr.Error("์ด๋ฏธ์ง๊ฐ ์์ต๋๋ค.")
|
219 |
+
|
220 |
+
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as fp:
|
221 |
+
temp_img_path = fp.name
|
222 |
+
Image.fromarray(image_array).save(temp_img_path, format="PNG")
|
223 |
+
|
224 |
+
default_video_prompt = "Generate a video with smooth and natural movement. Objects should have visible motion while maintaining fluid transitions."
|
225 |
+
result_video_path = run_process_video_api(
|
226 |
+
image_path=temp_img_path,
|
227 |
+
prompt=default_video_prompt,
|
228 |
+
video_length=2.0,
|
229 |
+
)
|
230 |
+
if result_video_path is None:
|
231 |
+
raise gr.Error("์์ API ํธ์ถ ์คํจ ๋๋ ๊ฒฐ๊ณผ ์์")
|
232 |
+
|
233 |
+
final_video = add_watermark_to_video(result_video_path, watermark_text="Ginigen.com")
|
234 |
+
return final_video
|
235 |
+
|
236 |
+
|
237 |
+
# Text-to-Image functions
|
238 |
+
def test_text2img_api_connection() -> str:
|
239 |
+
"""Text-to-Image API ์๋ฒ ์ฐ๊ฒฐ ํ
์คํธ"""
|
240 |
+
try:
|
241 |
+
client = Client(TEXT2IMG_API_URL)
|
242 |
+
return "API ์ฐ๊ฒฐ ์ฑ๊ณต: ์ ์ ์๋ ์ค"
|
243 |
+
except Exception as e:
|
244 |
+
logging.error(f"API connection test failed: {e}")
|
245 |
+
return f"API ์ฐ๊ฒฐ ์คํจ: {e}"
|
246 |
+
|
247 |
+
def generate_text_to_image(prompt: str, width: int, height: int, guidance: float, inference_steps: int, seed: int) -> tuple:
|
248 |
+
"""ํ
์คํธ๋ฅผ ์ด๋ฏธ์ง๋ก ์์ฑํ๋ ํจ์"""
|
249 |
+
if not prompt:
|
250 |
+
return None, "์ค๋ฅ: ํ๋กฌํํธ๋ฅผ ์
๋ ฅํด์ฃผ์ธ์"
|
251 |
+
|
252 |
+
try:
|
253 |
+
client = Client(TEXT2IMG_API_URL)
|
254 |
+
result = client.predict(
|
255 |
+
prompt=prompt,
|
256 |
+
width=int(width),
|
257 |
+
height=int(height),
|
258 |
+
guidance=float(guidance),
|
259 |
+
inference_steps=int(inference_steps),
|
260 |
+
seed=int(seed),
|
261 |
+
do_img2img=False,
|
262 |
+
init_image=None,
|
263 |
+
image2image_strength=0.8,
|
264 |
+
resize_img=True,
|
265 |
+
api_name="/generate_image"
|
266 |
+
)
|
267 |
+
return result[0], f"์ฌ์ฉ๋ ์๋: {result[1]}"
|
268 |
+
except Exception as e:
|
269 |
+
logging.error(f"Image generation failed: {str(e)}")
|
270 |
+
return None, f"์ค๋ฅ: {str(e)}"
|
271 |
+
|
272 |
+
# Image size presets
|
273 |
+
IMAGE_PRESETS = {
|
274 |
+
"์ปค์คํ
": {"width": 1024, "height": 1024, "label": "์ปค์คํ
ํฌ๊ธฐ"},
|
275 |
+
"1:1 ์ ์ฌ๊ฐํ": {"width": 1024, "height": 1024, "label": "1:1 (์ ์ฌ๊ฐํ)"},
|
276 |
+
"4:3 ํ์ค": {"width": 1024, "height": 768, "label": "4:3 (ํ์ค)"},
|
277 |
+
"16:9 ์์ด๋์คํฌ๋ฆฐ": {"width": 1024, "height": 576, "label": "16:9 (์์ด๋์คํฌ๋ฆฐ)"},
|
278 |
+
"9:16 ์ธ๋กํ": {"width": 576, "height": 1024, "label": "9:16 (์ธ๋กํ)"},
|
279 |
+
"6:19 ํน์ ์ธ๋กํ": {"width": 324, "height": 1024, "label": "6:19 (ํน์ ์ธ๋กํ)"},
|
280 |
+
"Instagram ์ ์ฌ๊ฐํ": {"width": 1080, "height": 1080, "label": "Instagram ์ ์ฌ๊ฐํ (1:1)"},
|
281 |
+
"Instagram ์คํ ๋ฆฌ": {"width": 1080, "height": 1920, "label": "Instagram ์คํ ๋ฆฌ (9:16)"},
|
282 |
+
"Instagram ๊ฐ๋กํ": {"width": 1080, "height": 566, "label": "Instagram ๊ฐ๋กํ (1.91:1)"},
|
283 |
+
"Facebook ์ปค๋ฒ": {"width": 820, "height": 312, "label": "Facebook ์ปค๋ฒ (2.63:1)"},
|
284 |
+
"Twitter ํค๋": {"width": 1500, "height": 500, "label": "Twitter ํค๋ (3:1)"},
|
285 |
+
"YouTube ์ธ๋ค์ผ": {"width": 1280, "height": 720, "label": "YouTube ์ธ๋ค์ผ (16:9)"},
|
286 |
+
"LinkedIn ๋ฐฐ๋": {"width": 1584, "height": 396, "label": "LinkedIn ๋ฐฐ๋ (4:1)"},
|
287 |
+
}
|
288 |
+
|
289 |
+
def update_dimensions(preset):
|
290 |
+
"""์ ํ๋ ํ๋ฆฌ์
์ ๋ฐ๋ผ width, height ์
๋ฐ์ดํธ"""
|
291 |
+
if preset in IMAGE_PRESETS:
|
292 |
+
return IMAGE_PRESETS[preset]["width"], IMAGE_PRESETS[preset]["height"]
|
293 |
+
return 1024, 1024
|
294 |
+
|
295 |
+
|
296 |
+
# Custom CSS
|
297 |
+
_CUSTOM_CSS_ = """
|
298 |
+
:root {
|
299 |
+
--primary-color: #f8c3cd;
|
300 |
+
--secondary-color: #b3e5fc;
|
301 |
+
--background-color: #f5f5f7;
|
302 |
+
--card-background: #ffffff;
|
303 |
+
--text-color: #424242;
|
304 |
+
--accent-color: #ffb6c1;
|
305 |
+
--success-color: #c8e6c9;
|
306 |
+
--warning-color: #fff9c4;
|
307 |
+
--shadow-color: rgba(0, 0, 0, 0.1);
|
308 |
+
--border-radius: 12px;
|
309 |
+
}
|
310 |
+
|
311 |
+
body {
|
312 |
+
background-color: var(--background-color) !important;
|
313 |
+
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
|
314 |
+
}
|
315 |
+
|
316 |
+
.gradio-container {
|
317 |
+
max-width: 1200px !important;
|
318 |
+
margin: 0 auto !important;
|
319 |
+
}
|
320 |
+
|
321 |
+
h1 {
|
322 |
+
color: #9c27b0 !important;
|
323 |
+
font-weight: 800 !important;
|
324 |
+
text-shadow: 2px 2px 4px rgba(156, 39, 176, 0.2) !important;
|
325 |
+
letter-spacing: -0.5px !important;
|
326 |
+
}
|
327 |
+
|
328 |
+
.panel-box {
|
329 |
+
border-radius: var(--border-radius) !important;
|
330 |
+
box-shadow: 0 8px 16px var(--shadow-color) !important;
|
331 |
+
background-color: var(--card-background) !important;
|
332 |
+
border: none !important;
|
333 |
+
overflow: hidden !important;
|
334 |
+
padding: 20px !important;
|
335 |
+
margin-bottom: 20px !important;
|
336 |
+
}
|
337 |
+
|
338 |
+
button.gr-button {
|
339 |
+
background: linear-gradient(135deg, var(--primary-color), #e1bee7) !important;
|
340 |
+
border-radius: var(--border-radius) !important;
|
341 |
+
color: #4a148c !important;
|
342 |
+
font-weight: 600 !important;
|
343 |
+
border: none !important;
|
344 |
+
padding: 10px 20px !important;
|
345 |
+
transition: all 0.3s ease !important;
|
346 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1) !important;
|
347 |
+
}
|
348 |
+
|
349 |
+
button.gr-button:hover {
|
350 |
+
transform: translateY(-2px) !important;
|
351 |
+
box-shadow: 0 6px 10px rgba(0, 0, 0, 0.15) !important;
|
352 |
+
background: linear-gradient(135deg, #e1bee7, var(--primary-color)) !important;
|
353 |
+
}
|
354 |
+
|
355 |
+
input, select, textarea, .gr-input {
|
356 |
+
border-radius: 8px !important;
|
357 |
+
border: 2px solid #e0e0e0 !important;
|
358 |
+
padding: 10px 15px !important;
|
359 |
+
transition: all 0.3s ease !important;
|
360 |
+
background-color: #fafafa !important;
|
361 |
+
}
|
362 |
+
|
363 |
+
input:focus, select:focus, textarea:focus, .gr-input:focus {
|
364 |
+
border-color: var(--primary-color) !important;
|
365 |
+
box-shadow: 0 0 0 3px rgba(248, 195, 205, 0.3) !important;
|
366 |
+
}
|
367 |
+
|
368 |
+
.gr-form input[type=range] {
|
369 |
+
appearance: none !important;
|
370 |
+
width: 100% !important;
|
371 |
+
height: 6px !important;
|
372 |
+
background: #e0e0e0 !important;
|
373 |
+
border-radius: 5px !important;
|
374 |
+
outline: none !important;
|
375 |
+
}
|
376 |
+
|
377 |
+
.gr-form input[type=range]::-webkit-slider-thumb {
|
378 |
+
appearance: none !important;
|
379 |
+
width: 16px !important;
|
380 |
+
height: 16px !important;
|
381 |
+
background: var(--primary-color) !important;
|
382 |
+
border-radius: 50% !important;
|
383 |
+
cursor: pointer !important;
|
384 |
+
border: 2px solid white !important;
|
385 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1) !important;
|
386 |
+
}
|
387 |
+
|
388 |
+
.gr-form select {
|
389 |
+
background-color: white !important;
|
390 |
+
border: 2px solid #e0e0e0 !important;
|
391 |
+
border-radius: 8px !important;
|
392 |
+
padding: 10px 15px !important;
|
393 |
+
}
|
394 |
+
|
395 |
+
.gr-image-input {
|
396 |
+
border: 2px dashed #b39ddb !important;
|
397 |
+
border-radius: var(--border-radius) !important;
|
398 |
+
background-color: #f3e5f5 !important;
|
399 |
+
padding: 20px !important;
|
400 |
+
display: flex !important;
|
401 |
+
flex-direction: column !important;
|
402 |
+
align-items: center !important;
|
403 |
+
justify-content: center !important;
|
404 |
+
transition: all 0.3s ease !important;
|
405 |
+
}
|
406 |
+
|
407 |
+
.gr-image-input:hover {
|
408 |
+
background-color: #ede7f6 !important;
|
409 |
+
border-color: #9575cd !important;
|
410 |
+
}
|
411 |
+
|
412 |
+
body::before {
|
413 |
+
content: "" !important;
|
414 |
+
position: fixed !important;
|
415 |
+
top: 0 !important;
|
416 |
+
left: 0 !important;
|
417 |
+
width: 100% !important;
|
418 |
+
height: 100% !important;
|
419 |
+
background:
|
420 |
+
radial-gradient(circle at 10% 20%, rgba(248, 195, 205, 0.1) 0%, rgba(245, 245, 247, 0) 20%),
|
421 |
+
radial-gradient(circle at 80% 70%, rgba(179, 229, 252, 0.1) 0%, rgba(245, 245, 247, 0) 20%) !important;
|
422 |
+
pointer-events: none !important;
|
423 |
+
z-index: -1 !important;
|
424 |
+
}
|
425 |
+
|
426 |
+
.gr-gallery {
|
427 |
+
grid-gap: 15px !important;
|
428 |
+
}
|
429 |
+
|
430 |
+
.gr-gallery-item {
|
431 |
+
border-radius: var(--border-radius) !important;
|
432 |
+
overflow: hidden !important;
|
433 |
+
box-shadow: 0 4px 8px var(--shadow-color) !important;
|
434 |
+
transition: transform 0.3s ease !important;
|
435 |
+
}
|
436 |
+
|
437 |
+
.gr-gallery-item:hover {
|
438 |
+
transform: scale(1.02) !important;
|
439 |
+
}
|
440 |
+
|
441 |
+
.gr-form label {
|
442 |
+
font-weight: 600 !important;
|
443 |
+
color: #673ab7 !important;
|
444 |
+
margin-bottom: 5px !important;
|
445 |
+
}
|
446 |
+
|
447 |
+
.gr-padded {
|
448 |
+
padding: 20px !important;
|
449 |
+
}
|
450 |
+
|
451 |
+
.gr-compact {
|
452 |
+
gap: 15px !important;
|
453 |
+
}
|
454 |
+
|
455 |
+
.gr-form > div {
|
456 |
+
margin-bottom: 16px !important;
|
457 |
+
}
|
458 |
+
|
459 |
+
.gr-form h3 {
|
460 |
+
color: #7b1fa2 !important;
|
461 |
+
margin-top: 5px !important;
|
462 |
+
margin-bottom: 15px !important;
|
463 |
+
border-bottom: 2px solid #e1bee7 !important;
|
464 |
+
padding-bottom: 8px !important;
|
465 |
+
}
|
466 |
+
|
467 |
+
#examples-panel {
|
468 |
+
background-color: #f3e5f5 !important;
|
469 |
+
border-radius: var(--border-radius) !important;
|
470 |
+
padding: 15px !important;
|
471 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05) !important;
|
472 |
+
}
|
473 |
+
|
474 |
+
#examples-panel h2 {
|
475 |
+
color: #7b1fa2 !important;
|
476 |
+
font-size: 1.5rem !important;
|
477 |
+
margin-bottom: 15px !important;
|
478 |
+
}
|
479 |
+
|
480 |
+
.gr-accordion {
|
481 |
+
border: 1px solid #e0e0e0 !important;
|
482 |
+
border-radius: var(--border-radius) !important;
|
483 |
+
overflow: hidden !important;
|
484 |
+
}
|
485 |
+
|
486 |
+
.gr-accordion summary {
|
487 |
+
padding: 12px 16px !important;
|
488 |
+
background-color: #f9f9f9 !important;
|
489 |
+
cursor: pointer !important;
|
490 |
+
font-weight: 600 !important;
|
491 |
+
color: #673ab7 !important;
|
492 |
+
}
|
493 |
+
|
494 |
+
#generate-btn, #text2img-generate-btn {
|
495 |
+
background: linear-gradient(135deg, #ff9a9e, #fad0c4) !important;
|
496 |
+
font-size: 1.1rem !important;
|
497 |
+
padding: 12px 24px !important;
|
498 |
+
margin-top: 10px !important;
|
499 |
+
margin-bottom: 15px !important;
|
500 |
+
width: 100% !important;
|
501 |
+
}
|
502 |
+
|
503 |
+
#generate-btn:hover, #text2img-generate-btn:hover {
|
504 |
+
background: linear-gradient(135deg, #fad0c4, #ff9a9e) !important;
|
505 |
+
}
|
506 |
+
|
507 |
+
/* Tab styling */
|
508 |
+
.gr-tabs {
|
509 |
+
border: none !important;
|
510 |
+
margin-top: 20px !important;
|
511 |
+
}
|
512 |
+
|
513 |
+
.gr-tab {
|
514 |
+
background-color: #f3e5f5 !important;
|
515 |
+
border: none !important;
|
516 |
+
padding: 12px 24px !important;
|
517 |
+
font-weight: 600 !important;
|
518 |
+
color: #673ab7 !important;
|
519 |
+
transition: all 0.3s ease !important;
|
520 |
+
}
|
521 |
+
|
522 |
+
.gr-tab.selected {
|
523 |
+
background: linear-gradient(135deg, var(--primary-color), #e1bee7) !important;
|
524 |
+
color: white !important;
|
525 |
+
}
|
526 |
+
|
527 |
+
.gr-tab:hover {
|
528 |
+
background-color: #ede7f6 !important;
|
529 |
+
}
|
530 |
+
"""
|
531 |
+
|
532 |
+
_HEADER_ = '''
|
533 |
+
<div style="text-align: center; max-width: 850px; margin: 0 auto; padding: 25px 0;">
|
534 |
+
<div style="background: linear-gradient(135deg, #f8c3cd, #e1bee7, #b3e5fc); color: white; padding: 15px; border-radius: 15px; box-shadow: 0 10px 20px rgba(0,0,0,0.1); margin-bottom: 20px;">
|
535 |
+
<h1 style="font-size: 3rem; font-weight: 800; margin: 0; color: white; text-shadow: 2px 2px 4px rgba(0,0,0,0.2);">โจ DreamO Video โจ</h1>
|
536 |
+
<p style="font-size: 1.2rem; margin: 10px 0 0;">Create customized images with advanced AI</p>
|
537 |
+
</div>
|
538 |
+
|
539 |
+
<div style="background: white; padding: 15px; border-radius: 12px; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
|
540 |
+
<p style="font-size: 1rem; margin: 0;">In the current demo version, due to ZeroGPU limitations, video generation is restricted to 2 seconds only. (The full version supports generation of up to 60 seconds)</p>
|
541 |
+
</div>
|
542 |
+
|
543 |
+
</div>
|
544 |
+
|
545 |
+
<div style="background: #fff9c4; padding: 15px; border-radius: 12px; margin-bottom: 20px; border-left: 5px solid #ffd54f; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
|
546 |
+
<h3 style="margin-top: 0; color: #ff6f00;">๐ฉ Update Notes:</h3>
|
547 |
+
<ul style="margin-bottom: 0; padding-left: 20px;">
|
548 |
+
<li><b>2025.05.11:</b> We have updated the model to mitigate over-saturation and plastic-face issues. The new version shows consistent improvements over the previous release.</li>
|
549 |
+
<li><b>2025.05.13:</b> 'DreamO Video' Integration version Release</li>
|
550 |
+
<li><b>2025.05.28:</b> Added 'Text-to-Image' tab with multiple aspect ratios and SNS presets</li>
|
551 |
+
</ul>
|
552 |
+
</div>
|
553 |
+
'''
|
554 |
+
|
555 |
+
_CITE_ = r"""
|
556 |
+
<div style="background: white; padding: 20px; border-radius: 12px; margin-top: 20px; box-shadow: 0 5px 15px rgba(0,0,0,0.05);">
|
557 |
+
<p style="margin: 0; font-size: 1.1rem;">If DreamO is helpful, please help to โญ the <a href='https://discord.gg/openfreeai' target='_blank' style="color: #9c27b0; font-weight: 600;">community</a>. Thanks!</p>
|
558 |
+
<hr style="border: none; height: 1px; background-color: #e0e0e0; margin: 15px 0;">
|
559 |
+
<h4 style="margin: 0 0 10px; color: #7b1fa2;">๐ง Contact</h4>
|
560 |
+
<p style="margin: 0;">If you have any questions or feedback, feel free to open a discussion or contact <b>[email protected]</b></p>
|
561 |
+
</div>
|
562 |
+
"""
|
563 |
+
|
564 |
+
def create_demo():
|
565 |
+
with gr.Blocks(css=_CUSTOM_CSS_) as demo:
|
566 |
+
gr.HTML(_HEADER_)
|
567 |
+
|
568 |
+
with gr.Tabs():
|
569 |
+
# DreamO Tab
|
570 |
+
with gr.Tab("DreamO (์ฐธ์กฐ ์ด๋ฏธ์ง ๊ธฐ๋ฐ)"):
|
571 |
+
with gr.Row():
|
572 |
+
with gr.Column(scale=6):
|
573 |
+
with gr.Group(elem_id="input-panel", elem_classes="panel-box"):
|
574 |
+
gr.Markdown("### ๐ธ Reference Images")
|
575 |
+
with gr.Row():
|
576 |
+
with gr.Column():
|
577 |
+
ref_image1 = gr.Image(label="Reference Image 1", type="numpy", height=256, elem_id="ref-image-1")
|
578 |
+
ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Task for Reference Image 1", elem_id="ref-task-1")
|
579 |
+
|
580 |
+
with gr.Column():
|
581 |
+
ref_image2 = gr.Image(label="Reference Image 2", type="numpy", height=256, elem_id="ref-image-2")
|
582 |
+
ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Task for Reference Image 2", elem_id="ref-task-2")
|
583 |
+
|
584 |
+
gr.Markdown("### โ๏ธ Generation Parameters")
|
585 |
+
prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street", elem_id="prompt-input")
|
586 |
+
|
587 |
+
with gr.Row():
|
588 |
+
width = gr.Slider(768, 1024, 1024, step=16, label="Width", elem_id="width-slider")
|
589 |
+
height = gr.Slider(768, 1024, 1024, step=16, label="Height", elem_id="height-slider")
|
590 |
+
|
591 |
+
with gr.Row():
|
592 |
+
num_steps = gr.Slider(8, 30, 12, step=1, label="Number of Steps", elem_id="steps-slider")
|
593 |
+
guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance Scale", elem_id="guidance-slider")
|
594 |
+
|
595 |
+
seed = gr.Textbox(label="Seed (-1 for random)", value="-1", elem_id="seed-input")
|
596 |
+
|
597 |
+
with gr.Accordion("Advanced Options", open=False):
|
598 |
+
ref_res = gr.Slider(512, 1024, 512, step=16, label="Resolution for Reference Image")
|
599 |
+
neg_prompt = gr.Textbox(label="Negative Prompt", value="")
|
600 |
+
neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Negative Guidance")
|
601 |
+
|
602 |
+
with gr.Row():
|
603 |
+
true_cfg = gr.Slider(1, 5, 1, step=0.1, label="True CFG")
|
604 |
+
first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="First Step Guidance")
|
605 |
+
|
606 |
+
with gr.Row():
|
607 |
+
cfg_start_step = gr.Slider(0, 30, 0, step=1, label="CFG Start Step")
|
608 |
+
cfg_end_step = gr.Slider(0, 30, 0, step=1, label="CFG End Step")
|
609 |
+
|
610 |
+
generate_btn = gr.Button("โจ Generate Image", elem_id="generate-btn")
|
611 |
+
gr.HTML(_CITE_)
|
612 |
+
|
613 |
+
with gr.Column(scale=6):
|
614 |
+
with gr.Group(elem_id="output-panel", elem_classes="panel-box"):
|
615 |
+
gr.Markdown("### ๐ผ๏ธ Generated Result")
|
616 |
+
output_image = gr.Image(label="Generated Image", elem_id="output-image", format='png')
|
617 |
+
seed_output = gr.Textbox(label="Used Seed", elem_id="seed-output")
|
618 |
+
|
619 |
+
generate_video_btn = gr.Button("๐ฌ Generate Video from Image")
|
620 |
+
output_video = gr.Video(label="Generated Video", elem_id="video-output")
|
621 |
+
|
622 |
+
gr.Markdown("### ๐ Preprocessing")
|
623 |
+
debug_image = gr.Gallery(
|
624 |
+
label="Preprocessing Results (including face crop and background removal)",
|
625 |
+
elem_id="debug-gallery",
|
626 |
+
)
|
627 |
+
|
628 |
+
with gr.Group(elem_id="examples-panel", elem_classes="panel-box"):
|
629 |
+
gr.Markdown("## ๐ Examples")
|
630 |
+
example_inps = [
|
631 |
+
[
|
632 |
+
'example_inputs/choi.jpg',
|
633 |
+
None,
|
634 |
+
'ip',
|
635 |
+
'ip',
|
636 |
+
'a woman sitting on the cloud, playing guitar',
|
637 |
+
1206523688721442817,
|
638 |
+
],
|
639 |
+
[
|
640 |
+
'example_inputs/choi.jpg',
|
641 |
+
None,
|
642 |
+
'id',
|
643 |
+
'ip',
|
644 |
+
'a woman holding a sign saying "TOP", on the mountain',
|
645 |
+
10441727852953907380,
|
646 |
+
],
|
647 |
+
[
|
648 |
+
'example_inputs/perfume.png',
|
649 |
+
None,
|
650 |
+
'ip',
|
651 |
+
'ip',
|
652 |
+
'a perfume under spotlight',
|
653 |
+
116150031980664704,
|
654 |
+
],
|
655 |
+
[
|
656 |
+
'example_inputs/choi.jpg',
|
657 |
+
None,
|
658 |
+
'id',
|
659 |
+
'ip',
|
660 |
+
'portrait, in alps',
|
661 |
+
5443415087540486371,
|
662 |
+
],
|
663 |
+
[
|
664 |
+
'example_inputs/mickey.png',
|
665 |
+
None,
|
666 |
+
'style',
|
667 |
+
'ip',
|
668 |
+
'generate a same style image. A rooster wearing overalls.',
|
669 |
+
6245580464677124951,
|
670 |
+
],
|
671 |
+
[
|
672 |
+
'example_inputs/mountain.png',
|
673 |
+
None,
|
674 |
+
'style',
|
675 |
+
'ip',
|
676 |
+
'generate a same style image. A pavilion by the river, and the distant mountains are endless',
|
677 |
+
5248066378927500767,
|
678 |
+
],
|
679 |
+
[
|
680 |
+
'example_inputs/shirt.png',
|
681 |
+
'example_inputs/skirt.jpeg',
|
682 |
+
'ip',
|
683 |
+
'ip',
|
684 |
+
'A girl is wearing a short-sleeved shirt and a short skirt on the beach.',
|
685 |
+
9514069256241143615,
|
686 |
+
],
|
687 |
+
[
|
688 |
+
'example_inputs/woman2.png',
|
689 |
+
'example_inputs/dress.png',
|
690 |
+
'id',
|
691 |
+
'ip',
|
692 |
+
'the woman wearing a dress, In the banquet hall',
|
693 |
+
7698454872441022867,
|
694 |
+
],
|
695 |
+
[
|
696 |
+
'example_inputs/dog1.png',
|
697 |
+
'example_inputs/dog2.png',
|
698 |
+
'ip',
|
699 |
+
'ip',
|
700 |
+
'two dogs in the jungle',
|
701 |
+
6187006025405083344,
|
702 |
+
],
|
703 |
+
]
|
704 |
+
gr.Examples(
|
705 |
+
examples=example_inps,
|
706 |
+
inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed],
|
707 |
+
label='Examples by category: IP task (rows 1-4), ID task (row 5), Style task (rows 6-7), Try-On task (rows 8-9)',
|
708 |
+
cache_examples='lazy',
|
709 |
+
outputs=[output_image, debug_image, seed_output],
|
710 |
+
fn=generate_image,
|
711 |
+
)
|
712 |
+
|
713 |
+
# Event handlers for DreamO tab
|
714 |
+
generate_btn.click(
|
715 |
+
fn=generate_image,
|
716 |
+
inputs=[
|
717 |
+
ref_image1,
|
718 |
+
ref_image2,
|
719 |
+
ref_task1,
|
720 |
+
ref_task2,
|
721 |
+
prompt,
|
722 |
+
seed,
|
723 |
+
width,
|
724 |
+
height,
|
725 |
+
ref_res,
|
726 |
+
num_steps,
|
727 |
+
guidance,
|
728 |
+
true_cfg,
|
729 |
+
cfg_start_step,
|
730 |
+
cfg_end_step,
|
731 |
+
neg_prompt,
|
732 |
+
neg_guidance,
|
733 |
+
first_step_guidance,
|
734 |
+
],
|
735 |
+
outputs=[output_image, debug_image, seed_output],
|
736 |
+
)
|
737 |
+
|
738 |
+
def on_click_generate_video(img):
|
739 |
+
if img is None:
|
740 |
+
raise gr.Error("๋จผ์ ์ด๋ฏธ์ง๋ฅผ ์์ฑํด์ฃผ์ธ์.")
|
741 |
+
video_path = generate_video_from_image(img)
|
742 |
+
return video_path
|
743 |
+
|
744 |
+
generate_video_btn.click(
|
745 |
+
fn=on_click_generate_video,
|
746 |
+
inputs=[output_image],
|
747 |
+
outputs=[output_video],
|
748 |
+
)
|
749 |
+
|
750 |
+
# Text-to-Image Tab
|
751 |
+
with gr.Tab("ํ
์คํธ to ์ด๋ฏธ์ง"):
|
752 |
+
with gr.Row():
|
753 |
+
with gr.Column(scale=6):
|
754 |
+
with gr.Group(elem_id="text2img-input-panel", elem_classes="panel-box"):
|
755 |
+
gr.Markdown("### ๐ ํ
์คํธ๋ก ์ด๋ฏธ์ง ์์ฑ")
|
756 |
+
|
757 |
+
# API ์ํ ํ์
|
758 |
+
text2img_status = gr.Textbox(
|
759 |
+
label="API ์ํ",
|
760 |
+
value="API ์ฐ๊ฒฐ ํ์ธ ์ค...",
|
761 |
+
interactive=False
|
762 |
+
)
|
763 |
+
|
764 |
+
# ํ๋กฌํํธ ์
๋ ฅ
|
765 |
+
text2img_prompt = gr.Textbox(
|
766 |
+
label="ํ๋กฌํํธ",
|
767 |
+
placeholder="์์ฑํ๊ณ ์ถ์ ์ด๋ฏธ์ง๋ฅผ ์ค๋ช
ํ์ธ์...",
|
768 |
+
lines=3
|
769 |
+
)
|
770 |
+
|
771 |
+
# ์ด๋ฏธ์ง ํฌ๊ธฐ ํ๋ฆฌ์
|
772 |
+
size_preset = gr.Dropdown(
|
773 |
+
choices=list(IMAGE_PRESETS.keys()),
|
774 |
+
value="1:1 ์ ์ฌ๊ฐํ",
|
775 |
+
label="์ด๋ฏธ์ง ํฌ๊ธฐ ํ๋ฆฌ์
",
|
776 |
+
interactive=True
|
777 |
+
)
|
778 |
+
|
779 |
+
with gr.Row():
|
780 |
+
text2img_width = gr.Slider(
|
781 |
+
minimum=256,
|
782 |
+
maximum=2048,
|
783 |
+
value=1024,
|
784 |
+
step=64,
|
785 |
+
label="๋๋น"
|
786 |
+
)
|
787 |
+
|
788 |
+
text2img_height = gr.Slider(
|
789 |
+
minimum=256,
|
790 |
+
maximum=2048,
|
791 |
+
value=1024,
|
792 |
+
step=64,
|
793 |
+
label="๋์ด"
|
794 |
+
)
|
795 |
+
|
796 |
+
with gr.Row():
|
797 |
+
text2img_guidance = gr.Slider(
|
798 |
+
minimum=1.0,
|
799 |
+
maximum=20.0,
|
800 |
+
value=3.5,
|
801 |
+
step=0.1,
|
802 |
+
label="๊ฐ์ด๋์ค ์ค์ผ์ผ"
|
803 |
+
)
|
804 |
+
|
805 |
+
text2img_steps = gr.Slider(
|
806 |
+
minimum=1,
|
807 |
+
maximum=50,
|
808 |
+
value=30,
|
809 |
+
step=1,
|
810 |
+
label="์ธํผ๋ฐ์ค ์คํ
"
|
811 |
+
)
|
812 |
+
|
813 |
+
text2img_seed = gr.Number(
|
814 |
+
label="์๋ (-1: ๋๋ค)",
|
815 |
+
value=-1,
|
816 |
+
precision=0
|
817 |
+
)
|
818 |
+
|
819 |
+
text2img_generate_btn = gr.Button("โจ ์ด๋ฏธ์ง ์์ฑ", elem_id="text2img-generate-btn")
|
820 |
+
|
821 |
+
# ์์ฑ ์ํ ํ์
|
822 |
+
text2img_generation_status = gr.Textbox(
|
823 |
+
label="์์ฑ ์ํ",
|
824 |
+
value="",
|
825 |
+
interactive=False,
|
826 |
+
visible=False
|
827 |
+
)
|
828 |
+
|
829 |
+
with gr.Column(scale=6):
|
830 |
+
with gr.Group(elem_id="text2img-output-panel", elem_classes="panel-box"):
|
831 |
+
gr.Markdown("### ๐ผ๏ธ ์์ฑ ๊ฒฐ๊ณผ")
|
832 |
+
text2img_output = gr.Image(label="์์ฑ๋ ์ด๋ฏธ์ง", format='png')
|
833 |
+
text2img_used_seed = gr.Textbox(label="์ฌ์ฉ๋ ์๋")
|
834 |
+
|
835 |
+
# ๋น๋์ค ์์ฑ ๋ฒํผ
|
836 |
+
text2img_video_btn = gr.Button("๐ฌ ์ด๋ฏธ์ง๋ฅผ ๋น๋์ค๋ก ๋ณํ")
|
837 |
+
text2img_video = gr.Video(label="์์ฑ๋ ๋น๋์ค")
|
838 |
+
|
839 |
+
# Text-to-Image ํญ ์์
|
840 |
+
with gr.Group(elem_id="text2img-examples-panel", elem_classes="panel-box"):
|
841 |
+
gr.Markdown("## ๐ ํ
์คํธ to ์ด๋ฏธ์ง ์์ ")
|
842 |
+
text2img_examples = [
|
843 |
+
["A serene Japanese garden with cherry blossoms", "1:1 ์ ์ฌ๊ฐํ", 3.5, 30, 42],
|
844 |
+
["Futuristic cityscape at sunset, cyberpunk style", "16:9 ์์ด๋์คํฌ๋ฆฐ", 4.0, 35, 123],
|
845 |
+
["Portrait of a mysterious woman with flowing hair", "Instagram ์คํ ๋ฆฌ", 3.0, 25, 789],
|
846 |
+
["Epic fantasy dragon breathing fire", "YouTube ์ธ๋ค์ผ", 5.0, 40, 456],
|
847 |
+
["Minimalist logo design for tech company", "LinkedIn ๋ฐฐ๋", 3.5, 30, 321],
|
848 |
+
]
|
849 |
+
gr.Examples(
|
850 |
+
examples=text2img_examples,
|
851 |
+
inputs=[text2img_prompt, size_preset, text2img_guidance, text2img_steps, text2img_seed],
|
852 |
+
label='์์ ํ๋กฌํํธ์ ์ค์ ',
|
853 |
+
cache_examples=False,
|
854 |
+
)
|
855 |
+
|
856 |
+
# Event handlers for Text-to-Image tab
|
857 |
+
size_preset.change(
|
858 |
+
fn=update_dimensions,
|
859 |
+
inputs=[size_preset],
|
860 |
+
outputs=[text2img_width, text2img_height]
|
861 |
+
)
|
862 |
+
|
863 |
+
def on_text2img_generate_click():
|
864 |
+
text2img_generation_status.visible = True
|
865 |
+
text2img_generation_status.value = "์ด๋ฏธ์ง ์์ฑ ์ค... ์ ์๋ง ๊ธฐ๋ค๋ ค์ฃผ์ธ์"
|
866 |
+
return text2img_generation_status
|
867 |
+
|
868 |
+
def on_text2img_generate_complete():
|
869 |
+
text2img_generation_status.value = "์ด๋ฏธ์ง ์์ฑ ์๋ฃ!"
|
870 |
+
return text2img_generation_status
|
871 |
+
|
872 |
+
text2img_generate_btn.click(
|
873 |
+
fn=on_text2img_generate_click,
|
874 |
+
outputs=[text2img_generation_status]
|
875 |
+
).then(
|
876 |
+
fn=generate_text_to_image,
|
877 |
+
inputs=[text2img_prompt, text2img_width, text2img_height, text2img_guidance, text2img_steps, text2img_seed],
|
878 |
+
outputs=[text2img_output, text2img_used_seed]
|
879 |
+
).then(
|
880 |
+
fn=on_text2img_generate_complete,
|
881 |
+
outputs=[text2img_generation_status]
|
882 |
+
)
|
883 |
+
|
884 |
+
def on_text2img_video_click(img):
|
885 |
+
if img is None:
|
886 |
+
raise gr.Error("๋จผ์ ์ด๋ฏธ์ง๋ฅผ ์์ฑํด์ฃผ์ธ์.")
|
887 |
+
video_path = generate_video_from_image(img)
|
888 |
+
return video_path
|
889 |
+
|
890 |
+
text2img_video_btn.click(
|
891 |
+
fn=on_text2img_video_click,
|
892 |
+
inputs=[text2img_output],
|
893 |
+
outputs=[text2img_video],
|
894 |
+
)
|
895 |
+
|
896 |
+
# API ์ํ ํ์ธ
|
897 |
+
def check_text2img_api_status():
|
898 |
+
return test_text2img_api_connection()
|
899 |
+
|
900 |
+
demo.load(
|
901 |
+
fn=check_text2img_api_status,
|
902 |
+
outputs=[text2img_status]
|
903 |
+
)
|
904 |
+
|
905 |
+
return demo
|
906 |
+
|
907 |
+
|
908 |
+
if __name__ == '__main__':
|
909 |
+
demo = create_demo()
|
910 |
+
demo.launch(
|
911 |
+
server_name="0.0.0.0",
|
912 |
+
share=True,
|
913 |
+
ssr_mode=False
|
914 |
+
)
|