import spaces import argparse import os import shutil import cv2 import gradio as gr import numpy as np import torch from facexlib.utils.face_restoration_helper import FaceRestoreHelper import huggingface_hub from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms.functional import normalize from dreamo.dreamo_pipeline import DreamOPipeline from dreamo.utils import img2tensor, resize_numpy_image_area, tensor2img, resize_numpy_image_long from tools import BEN2 parser = argparse.ArgumentParser() parser.add_argument('--port', type=int, default=8080) parser.add_argument('--no_turbo', action='store_true') args = parser.parse_args() huggingface_hub.login(os.getenv('HF_TOKEN')) try: shutil.rmtree('gradio_cached_examples') except FileNotFoundError: print("cache folder not exist") class Generator: def __init__(self): device = torch.device('cuda') # preprocessing models # background remove model: BEN2 self.bg_rm_model = BEN2.BEN_Base().to(device).eval() hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models') self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth') # face crop and align tool: facexlib self.face_helper = FaceRestoreHelper( upscale_factor=1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', device=device, ) # load dreamo model_root = 'black-forest-labs/FLUX.1-dev' dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16) dreamo_pipeline.load_dreamo_model(device, use_turbo=not args.no_turbo) self.dreamo_pipeline = dreamo_pipeline.to(device) @torch.no_grad() def get_align_face(self, img): # the face preprocessing code is same as PuLID self.face_helper.clean_all() image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) self.face_helper.read_image(image_bgr) self.face_helper.get_face_landmarks_5(only_center_face=True) self.face_helper.align_warp_face() if len(self.face_helper.cropped_faces) == 0: return None align_face = self.face_helper.cropped_faces[0] input = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0 input = input.to(torch.device("cuda")) parsing_out = self.face_helper.face_parse(normalize(input, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] parsing_out = parsing_out.argmax(dim=1, keepdim=True) bg_label = [0, 16, 18, 7, 8, 9, 14, 15] bg = sum(parsing_out == i for i in bg_label).bool() white_image = torch.ones_like(input) # only keep the face features face_features_image = torch.where(bg, white_image, input) face_features_image = tensor2img(face_features_image, rgb2bgr=False) return face_features_image generator = Generator() @spaces.GPU @torch.inference_mode() def generate_image( ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed, width=1024, height=1024, ref_res=512, num_steps=12, guidance=3.5, true_cfg=1, cfg_start_step=0, cfg_end_step=0, neg_prompt='', neg_guidance=3.5, first_step_guidance=0, ): print(prompt) ref_conds = [] debug_images = [] ref_images = [ref_image1, ref_image2] ref_tasks = [ref_task1, ref_task2] for idx, (ref_image, ref_task) in enumerate(zip(ref_images, ref_tasks)): if ref_image is not None: if ref_task == "id": ref_image = resize_numpy_image_long(ref_image, 1024) ref_image = generator.get_align_face(ref_image) elif ref_task != "style": ref_image = generator.bg_rm_model.inference(Image.fromarray(ref_image)) if ref_task != "id": ref_image = resize_numpy_image_area(np.array(ref_image), ref_res * ref_res) debug_images.append(ref_image) ref_image = img2tensor(ref_image, bgr2rgb=False).unsqueeze(0) / 255.0 ref_image = 2 * ref_image - 1.0 ref_conds.append( { 'img': ref_image, 'task': ref_task, 'idx': idx + 1, } ) seed = int(seed) if seed == -1: seed = torch.Generator(device="cpu").seed() image = generator.dreamo_pipeline( prompt=prompt, width=width, height=height, num_inference_steps=num_steps, guidance_scale=guidance, ref_conds=ref_conds, generator=torch.Generator(device="cpu").manual_seed(seed), true_cfg_scale=true_cfg, true_cfg_start_step=cfg_start_step, true_cfg_end_step=cfg_end_step, negative_prompt=neg_prompt, neg_guidance_scale=neg_guidance, first_step_guidance_scale=first_step_guidance if first_step_guidance > 0 else guidance, ).images[0] return image, debug_images, seed _HEADER_ = '''

DreamO Video

Paper: DreamO: A Unified Framework for Image Customization | Codes: GitHub

🚩 Update Notes: - 2025.05.11: We have updated the model to mitigate over-saturation and plastic-face issues. The new version shows consistent improvements over the previous release. - 2025.05.13: 'DreamO Video' Integration version Release ''' _CITE_ = r""" If DreamO is helpful, please help to ⭐ the community. Thanks! --- 📧 **Contact** If you have any questions or feedbacks, feel free to open a discussion or contact arxivgpt@gmail.com """ def create_demo(): with gr.Blocks(theme="apriel") as demo: gr.Markdown(_HEADER_) with gr.Row(): with gr.Column(): with gr.Row(): ref_image1 = gr.Image(label="ref image 1", type="numpy", height=256) ref_image2 = gr.Image(label="ref image 2", type="numpy", height=256) with gr.Row(): ref_task1 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 1") ref_task2 = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="task for ref image 2") prompt = gr.Textbox(label="Prompt", value="a person playing guitar in the street") width = gr.Slider(768, 1024, 1024, step=16, label="Width") height = gr.Slider(768, 1024, 1024, step=16, label="Height") num_steps = gr.Slider(8, 30, 12, step=1, label="Number of steps") guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Guidance") seed = gr.Textbox(label="Seed (-1 for random)", value="-1") with gr.Accordion("Advanced Options", open=False, visible=False): ref_res = gr.Slider(512, 1024, 512, step=16, label="resolution for ref image") neg_prompt = gr.Textbox(label="Neg Prompt", value="") neg_guidance = gr.Slider(1.0, 10.0, 3.5, step=0.1, label="Neg Guidance") true_cfg = gr.Slider(1, 5, 1, step=0.1, label="true cfg") cfg_start_step = gr.Slider(0, 30, 0, step=1, label="cfg start step") cfg_end_step = gr.Slider(0, 30, 0, step=1, label="cfg end step") first_step_guidance = gr.Slider(0, 10, 0, step=0.1, label="first step guidance") generate_btn = gr.Button("Generate") gr.Markdown(_CITE_) with gr.Column(): output_image = gr.Image(label="Generated Image", format='png') debug_image = gr.Gallery( label="Preprocessing output (including possible face crop and background remove)", elem_id="gallery", ) seed_output = gr.Textbox(label="Used Seed") with gr.Row(), gr.Column(): gr.Markdown("## Examples") example_inps = [ [ 'example_inputs/woman1.png', None, 'ip', 'ip', 'profile shot dark photo of a 25-year-old female with smoke escaping from her mouth, the backlit smoke gives the image an ephemeral quality, natural face, natural eyebrows, natural skin texture, award winning photo, highly detailed face, atmospheric lighting, film grain, monochrome', # noqa E501 9180879731249039735, ], [ 'example_inputs/man1.png', None, 'ip', 'ip', 'a man sitting on the cloud, playing guitar', 1206523688721442817, ], [ 'example_inputs/toy1.png', None, 'ip', 'ip', 'a purple toy holding a sign saying "DreamO", on the mountain', 10441727852953907380, ], [ 'example_inputs/perfume.png', None, 'ip', 'ip', 'a perfume under spotlight', 116150031980664704, ], [ 'example_inputs/hinton.jpeg', None, 'id', 'ip', 'portrait, Chibi', 5443415087540486371, ], [ 'example_inputs/mickey.png', None, 'style', 'ip', 'generate a same style image. A rooster wearing overalls.', 6245580464677124951, ], [ 'example_inputs/mountain.png', None, 'style', 'ip', 'generate a same style image. A pavilion by the river, and the distant mountains are endless', 5248066378927500767, ], [ 'example_inputs/shirt.png', 'example_inputs/skirt.jpeg', 'ip', 'ip', 'A girl is wearing a short-sleeved shirt and a short skirt on the beach.', 9514069256241143615, ], [ 'example_inputs/woman2.png', 'example_inputs/dress.png', 'id', 'ip', 'the woman wearing a dress, In the banquet hall', 7698454872441022867, ], [ 'example_inputs/dog1.png', 'example_inputs/dog2.png', 'ip', 'ip', 'two dogs in the jungle', 6187006025405083344, ], [ 'example_inputs/woman3.png', 'example_inputs/cat.png', 'ip', 'ip', 'A girl rides a giant cat, walking in the noisy modern city. High definition, realistic, non-cartoonish. Excellent photography work, 8k high definition.', # noqa E501 11980469406460273604, ], [ 'example_inputs/man2.jpeg', 'example_inputs/woman4.jpeg', 'ip', 'ip', 'a man is dancing with a woman in the room', 8303780338601106219, ], ] gr.Examples( examples=example_inps, inputs=[ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed], label='row 1-4: IP task; row 5: ID task; row 6-7: Style task. row 8-9: Try-On task; row 10-12: Multi IP', cache_examples='lazy', outputs=[output_image, debug_image, seed_output], fn=generate_image, ) generate_btn.click( fn=generate_image, inputs=[ ref_image1, ref_image2, ref_task1, ref_task2, prompt, seed, width, height, ref_res, num_steps, guidance, true_cfg, cfg_start_step, cfg_end_step, neg_prompt, neg_guidance, first_step_guidance, ], outputs=[output_image, debug_image, seed_output], ) return demo if __name__ == '__main__': demo = create_demo() demo.launch()