Spaces:
Runtime error
Runtime error
import io | |
import streamlit as st | |
import pandas as pd | |
import requests | |
import json | |
import time | |
st.title("Transaction Summarizer") | |
# custom CSS to gray out Tinyllama | |
st.markdown(""" | |
<style> | |
.disabled-option { | |
color: gray; | |
pointer-events: none; | |
cursor: not-allowed; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# model selection with grayed-out option | |
model_selection = st.radio( | |
"Select model to use:", | |
["Gemma", "Tinyllama (disabled)"], | |
index=0 | |
) | |
# Determine URL based on model selection | |
def get_base_url(): | |
if model_selection == "Gemma": | |
return "https://api.runpod.ai/v2/lld3iiy6fx7hcf/" | |
elif model_selection == "Tinyllama": | |
return "https://api.runpod.ai/v2/0wnm75vx5o77s1/" | |
# Initialize session state for jobs list | |
if "jobs" not in st.session_state: | |
st.session_state.jobs = [] | |
# Define the transaction processing function | |
def process_transactions(transactions): | |
base_url = get_base_url() | |
url = base_url + "runsync" | |
# Retrieve API key from Streamlit secrets | |
api_key = st.secrets["api_key"] | |
headers = { | |
'Content-Type': 'application/json', | |
'Authorization': api_key | |
} | |
data = { | |
'input': { | |
'transaction': transactions | |
} | |
} | |
json_data = json.dumps(data) | |
try: | |
# Send POST request to start processing | |
response = requests.post(url, headers=headers, data=json_data) | |
response.raise_for_status() # Raise an error for bad status codes | |
# Parse response to get job ID | |
result = response.json() | |
job_id = result['id'] | |
# Add the job to session state and set initial status | |
st.session_state.jobs.append({ | |
"id": job_id, | |
"status": "IN_QUEUE", | |
"transactions": transactions, | |
"result": None | |
}) | |
status_url = f"{base_url}status/{job_id}" | |
# Polling the job status | |
while True: | |
status_response = requests.get(status_url, headers=headers) | |
status_data = status_response.json() | |
status = status_data.get('status', '') | |
# Update job status in session state | |
for job in st.session_state.jobs: | |
if job["id"] == job_id: | |
job["status"] = status | |
if status == "COMPLETED": | |
break | |
elif status == "CANCELLED": | |
return None | |
time.sleep(2) # Adjust interval as needed | |
# Once status changes, retrieve and return the result | |
result_response = requests.get(status_url, headers=headers) | |
result_response.raise_for_status() | |
result_data = result_response.json().get('output') | |
# Update job result in session state | |
for job in st.session_state.jobs: | |
if job["id"] == job_id: | |
job["result"] = result_data | |
return result_data | |
except requests.exceptions.RequestException as e: | |
st.error(f"An error occurred: {e}") | |
return None | |
# Creating tabs for different pages | |
tab1, tab2 = st.tabs(["Submit Transactions", "Upload CSV"]) | |
# Tab 1: Submit Transactions | |
with tab1: | |
st.header("Submit New Transactions") | |
# Input for submitting new transactions | |
new_transactions_input = st.text_area("Enter your transactions (comma-separated)", key="input_area") | |
submit_button = st.button("Submit New Transactions", type="primary") | |
if submit_button and new_transactions_input: | |
# Split transactions and strip whitespace | |
new_transactions = [i.strip() for i in new_transactions_input.split(',') if i.strip()] | |
with st.spinner("Processing..."): | |
# Process the transactions and display the results | |
result_data = process_transactions(new_transactions) | |
if result_data: | |
st.write("Transaction Summaries:") | |
st.write(result_data) | |
else: | |
st.write("The job was cancelled or encountered an error.") | |
# Tab 2: Upload CSV | |
with tab2: | |
st.header("Upload a CSV File of Transactions") | |
# File uploader for CSV files | |
uploaded_file = st.file_uploader("Upload a CSV file of transactions", type=["csv"]) | |
if uploaded_file is not None: | |
# Read the uploaded CSV file | |
try: | |
df = pd.read_csv(uploaded_file) | |
st.write("Uploaded Data:") | |
st.write(df) | |
# Process the transactions in the CSV file | |
transactions = df['transaction'].tolist() | |
with st.spinner("Processing..."): | |
# Process the transactions and display the results | |
result_data = process_transactions(transactions) | |
if result_data: | |
df['summary'] = result_data | |
st.write("Summarized Data:") | |
st.write(df) | |
# Prepare the summarized data for download | |
csv_buffer = io.BytesIO() | |
df.to_csv(csv_buffer, index=False) | |
csv_buffer.seek(0) | |
# Download link for the summarized CSV | |
st.download_button( | |
label="Download Summarized CSV", | |
data=csv_buffer, | |
file_name="summarized_transactions.csv", | |
mime="text/csv" | |
) | |
else: | |
st.write("The job was cancelled or encountered an error.") | |
except Exception as e: | |
st.error(f"An error occurred while processing the CSV file: {e}") | |
# Reset button | |
if st.button("Reset All Jobs"): | |
st.session_state.jobs = [] | |