Spaces:
Running
Running
"""This pytorch_utils.py contains functions from: | |
https://github.com/qiuqiangkong/audioset_tagging_cnn/blob/master/pytorch/pytorch_utils.py | |
""" | |
import torch | |
def move_data_to_device(x, device): | |
if 'float' in str(x.dtype): | |
x = torch.Tensor(x) | |
elif 'int' in str(x.dtype): | |
x = torch.LongTensor(x) | |
else: | |
return x | |
return x.to(device) | |
def interpolate(x, ratio): | |
"""Interpolate the prediction to compensate the downsampling operation in a | |
CNN. | |
Args: | |
x: (batch_size, time_steps, classes_num) | |
ratio: int, ratio to upsample | |
""" | |
(batch_size, time_steps, classes_num) = x.shape | |
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1) | |
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num) | |
return upsampled | |
def pad_framewise_output(framewise_output, frames_num): | |
"""Pad framewise_output to the same length as input frames. | |
Args: | |
framewise_output: (batch_size, frames_num, classes_num) | |
frames_num: int, number of frames to pad | |
Outputs: | |
output: (batch_size, frames_num, classes_num) | |
""" | |
pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1) | |
"""tensor for padding""" | |
output = torch.cat((framewise_output, pad), dim=1) | |
"""(batch_size, frames_num, classes_num)""" | |
return output | |
def do_mixup(x, mixup_lambda): | |
out = x[0::2].transpose(0, -1) * mixup_lambda[0::2] + \ | |
x[1::2].transpose(0, -1) * mixup_lambda[1::2] | |
return out.transpose(0, -1) |