import streamlit as st import pandas as pd import time import matplotlib.pyplot as plt from openpyxl.utils.dataframe import dataframe_to_rows import io from rapidfuzz import fuzz import os from openpyxl import load_workbook from langchain.prompts import PromptTemplate from langchain_core.runnables import RunnablePassthrough from io import StringIO, BytesIO import sys import contextlib from langchain_openai import ChatOpenAI # Updated import import pdfkit from jinja2 import Template import time from tenacity import retry, stop_after_attempt, wait_exponential from typing import Optional from deep_translator import GoogleTranslator from googletrans import Translator as LegacyTranslator import torch from transformers import ( pipeline, AutoModelForSeq2SeqLM, AutoTokenizer ) class FallbackLLMSystem: def __init__(self): """Initialize fallback models for event detection and reasoning""" try: # Initialize MT5 model (multilingual T5) self.model_name = "google/mt5-small" self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name) # Set device self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = self.model.to(self.device) st.success(f"Successfully initialized MT5 model on {self.device}") except Exception as e: st.error(f"Error initializing MT5: {str(e)}") raise def detect_events(self, text, entity): """Detect events using MT5""" # Initialize default return values event_type = "Нет" summary = "" try: prompt = f"""Analyze news about company {entity}: {text} Classify event type as one of: - Отчетность (financial reports) - РЦБ (securities market events) - Суд (legal actions) - Нет (no significant events) Format response as: Тип: [type] Краткое описание: [summary]""" inputs = self.tokenizer( prompt, return_tensors="pt", padding=True, truncation=True, max_length=512 ).to(self.device) outputs = self.model.generate( **inputs, max_length=200, num_return_sequences=1, do_sample=False, pad_token_id=self.tokenizer.pad_token_id ) response = self.tokenizer.decode(outputs[0], skip_special_tokens=True) # Parse response if "Тип:" in response and "Краткое описание:" in response: parts = response.split("Краткое описание:") type_part = parts[0] if "Тип:" in type_part: event_type = type_part.split("Тип:")[1].strip() # Validate event type valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"] if event_type not in valid_types: event_type = "Нет" if len(parts) > 1: summary = parts[1].strip() return event_type, summary except Exception as e: st.warning(f"Event detection error: {str(e)}") return "Нет", "Ошибка анализа" def ensure_groq_llm(): """Initialize Groq LLM for impact estimation""" try: if 'groq_key' not in st.secrets: st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.") return None return ChatOpenAI( base_url="https://api.groq.com/openai/v1", model="llama-3.1-70b-versatile", openai_api_key=st.secrets['groq_key'], temperature=0.0 ) except Exception as e: st.error(f"Error initializing Groq LLM: {str(e)}") return None def estimate_impact(llm, news_text, entity): """ Estimate impact using Groq LLM regardless of the main model choice. Falls back to the provided LLM if Groq initialization fails. """ # Initialize default return values impact = "Неопределенный эффект" reasoning = "Не удалось получить обоснование" try: # Always try to use Groq first groq_llm = ensure_groq_llm() working_llm = groq_llm if groq_llm is not None else llm template = """ You are a financial analyst. Analyze this news piece about {entity} and assess its potential impact. News: {news} Classify the impact into one of these categories: 1. "Значительный риск убытков" (Significant loss risk) 2. "Умеренный риск убытков" (Moderate loss risk) 3. "Незначительный риск убытков" (Minor loss risk) 4. "Вероятность прибыли" (Potential profit) 5. "Неопределенный эффект" (Uncertain effect) Provide a brief, fact-based reasoning for your assessment. Format your response exactly as: Impact: [category] Reasoning: [explanation in 2-3 sentences] """ prompt = PromptTemplate(template=template, input_variables=["entity", "news"]) chain = prompt | working_llm response = chain.invoke({"entity": entity, "news": news_text}) # Extract content from response response_text = response.content if hasattr(response, 'content') else str(response) if "Impact:" in response_text and "Reasoning:" in response_text: impact_part, reasoning_part = response_text.split("Reasoning:") impact_temp = impact_part.split("Impact:")[1].strip() # Validate impact category valid_impacts = [ "Значительный риск убытков", "Умеренный риск убытков", "Незначительный риск убытков", "Вероятность прибыли", "Неопределенный эффект" ] if impact_temp in valid_impacts: impact = impact_temp reasoning = reasoning_part.strip() except Exception as e: st.warning(f"Error in impact estimation: {str(e)}") return impact, reasoning class TranslationSystem: def __init__(self, batch_size=5): """ Initialize translation system using Helsinki NLP model. """ try: self.translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ru-en") # Note: ru-en for Russian to English self.batch_size = batch_size except Exception as e: st.error(f"Error initializing Helsinki NLP translator: {str(e)}") raise def translate_text(self, text): """ Translate single text using Helsinki NLP model with chunking for long texts. """ if pd.isna(text) or not isinstance(text, str) or not text.strip(): return text text = str(text).strip() if not text: return text try: # Helsinki NLP model typically has a max length limit max_chunk_size = 512 # Standard transformer length if len(text.split()) <= max_chunk_size: # Direct translation for short texts result = self.translator(text, max_length=512) return result[0]['translation_text'] # Split long text into chunks by sentences chunks = self._split_into_chunks(text, max_chunk_size) translated_chunks = [] for chunk in chunks: result = self.translator(chunk, max_length=512) translated_chunks.append(result[0]['translation_text']) time.sleep(0.1) # Small delay between chunks return ' '.join(translated_chunks) except Exception as e: st.warning(f"Translation error: {str(e)}. Using original text.") return text def _split_into_chunks(self, text, max_length): """ Split text into chunks by sentences, respecting max length. """ # Simple sentence splitting by common punctuation sentences = [s.strip() for s in text.replace('!', '.').replace('?', '.').split('.') if s.strip()] chunks = [] current_chunk = [] current_length = 0 for sentence in sentences: sentence_length = len(sentence.split()) if current_length + sentence_length > max_length: if current_chunk: chunks.append(' '.join(current_chunk)) current_chunk = [sentence] current_length = sentence_length else: current_chunk.append(sentence) current_length += sentence_length if current_chunk: chunks.append(' '.join(current_chunk)) return chunks def process_file(uploaded_file, model_choice, translation_method=None): df = None try: df = pd.read_excel(uploaded_file, sheet_name='Публикации') llm = init_langchain_llm(model_choice) # Add fallback initialization here fallback_llm = FallbackLLMSystem() if model_choice != "Local-MT5" else llm translator = TranslationSystem(batch_size=5) # Pre-initialize Groq for impact estimation groq_llm = ensure_groq_llm() if groq_llm is None: st.warning("Failed to initialize Groq LLM for impact estimation. Using fallback model.") # Initialize all required columns first df['Translated'] = '' df['Sentiment'] = '' df['Impact'] = '' df['Reasoning'] = '' df['Event_Type'] = '' df['Event_Summary'] = '' # Validate required columns required_columns = ['Объект', 'Заголовок', 'Выдержки из текста'] missing_columns = [col for col in required_columns if col not in df.columns] if missing_columns: st.error(f"Error: The following required columns are missing: {', '.join(missing_columns)}") return None # Deduplication original_news_count = len(df) df = df.groupby('Объект', group_keys=False).apply( lambda x: fuzzy_deduplicate(x, 'Выдержки из текста', 65) ).reset_index(drop=True) remaining_news_count = len(df) duplicates_removed = original_news_count - remaining_news_count st.write(f"Из {original_news_count} новостных сообщений удалены {duplicates_removed} дублирующих. Осталось {remaining_news_count}.") # Initialize progress tracking progress_bar = st.progress(0) status_text = st.empty() # Process in batches batch_size = 5 for i in range(0, len(df), batch_size): batch_df = df.iloc[i:i+batch_size] for idx, row in batch_df.iterrows(): try: # Translation with Helsinki NLP translated_text = translator.translate_text(row['Выдержки из текста']) df.at[idx, 'Translated'] = translated_text # Sentiment analysis sentiment = analyze_sentiment(translated_text) df.at[idx, 'Sentiment'] = sentiment try: # Try with primary LLM event_type, event_summary = detect_events( llm, row['Выдержки из текста'], row['Объект'] ) except Exception as e: if 'rate limit' in str(e).lower(): st.warning("Rate limit reached. Using fallback model for event detection.") event_type, event_summary = fallback_llm.detect_events( row['Выдержки из текста'], row['Объект'] ) df.at[idx, 'Event_Type'] = event_type df.at[idx, 'Event_Summary'] = event_summary # Similar for impact estimation if sentiment == "Negative": try: impact, reasoning = estimate_impact( groq_llm if groq_llm is not None else llm, translated_text, row['Объект'] ) df.at[idx, 'Impact'] = impact df.at[idx, 'Reasoning'] = reasoning except Exception as e: if 'rate limit' in str(e).lower(): st.warning("Groq rate limit reached. Waiting before retry...") time.sleep(240) # Wait 4 minutes continue df.at[idx, 'Impact'] = impact df.at[idx, 'Reasoning'] = reasoning # Update progress progress = (idx + 1) / len(df) progress_bar.progress(progress) status_text.text(f"Проанализировано {idx + 1} из {len(df)} новостей") except Exception as e: if 'rate limit' in str(e).lower(): wait_time = 240 # 4 minutes wait for rate limit st.warning(f"Rate limit reached. Waiting {wait_time} seconds...") time.sleep(wait_time) continue st.warning(f"Ошибка при обработке новости {idx + 1}: {str(e)}") continue # Small delay between items time.sleep(0.5) # Delay between batches time.sleep(2) return df except Exception as e: st.error(f"❌ Ошибка при обработке файла: {str(e)}") return None def translate_reasoning_to_russian(llm, text): template = """ Translate this English explanation to Russian, maintaining a formal business style: "{text}" Your response should contain only the Russian translation. """ prompt = PromptTemplate(template=template, input_variables=["text"]) chain = prompt | llm | RunnablePassthrough() response = chain.invoke({"text": text}) # Handle different response types if hasattr(response, 'content'): return response.content.strip() elif isinstance(response, str): return response.strip() else: return str(response).strip() def create_download_section(excel_data, pdf_data): st.markdown("""
📥 Результаты анализа доступны для скачивания:
""", unsafe_allow_html=True) col1, col2 = st.columns(2) with col1: if excel_data is not None: st.download_button( label="📊 Скачать Excel отчет", data=excel_data, file_name="результат_анализа.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", key="excel_download" ) else: st.error("Ошибка при создании Excel файла") def display_sentiment_results(row, sentiment, impact=None, reasoning=None): if sentiment == "Negative": st.markdown(f"""
Объект: {row['Объект']}
Новость: {row['Заголовок']}
Тональность: {sentiment}
{"Эффект: " + impact + "
" if impact else ""} {"Обоснование: " + reasoning + "
" if reasoning else ""}
""", unsafe_allow_html=True) elif sentiment == "Positive": st.markdown(f"""
Объект: {row['Объект']}
Новость: {row['Заголовок']}
Тональность: {sentiment}
""", unsafe_allow_html=True) else: st.write(f"Объект: {row['Объект']}") st.write(f"Новость: {row['Заголовок']}") st.write(f"Тональность: {sentiment}") st.write("---") # Initialize sentiment analyzers finbert = pipeline("sentiment-analysis", model="ProsusAI/finbert") roberta = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment") finbert_tone = pipeline("sentiment-analysis", model="yiyanghkust/finbert-tone") def get_mapped_sentiment(result): label = result['label'].lower() if label in ["positive", "label_2", "pos", "pos_label"]: return "Positive" elif label in ["negative", "label_0", "neg", "neg_label"]: return "Negative" return "Neutral" def analyze_sentiment(text): finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0]) roberta_result = get_mapped_sentiment(roberta(text, truncation=True, max_length=512)[0]) finbert_tone_result = get_mapped_sentiment(finbert_tone(text, truncation=True, max_length=512)[0]) # Consider sentiment negative if any model says it's negative if any(result == "Negative" for result in [finbert_result, roberta_result, finbert_tone_result]): return "Negative" elif all(result == "Positive" for result in [finbert_result, roberta_result, finbert_tone_result]): return "Positive" return "Neutral" def analyze_sentiment(text): finbert_result = get_mapped_sentiment(finbert(text, truncation=True, max_length=512)[0]) roberta_result = get_mapped_sentiment(roberta(text, truncation=True, max_length=512)[0]) finbert_tone_result = get_mapped_sentiment(finbert_tone(text, truncation=True, max_length=512)[0]) # Count occurrences of each sentiment sentiments = [finbert_result, roberta_result, finbert_tone_result] sentiment_counts = {s: sentiments.count(s) for s in set(sentiments)} # Return sentiment if at least two models agree, otherwise return Neutral for sentiment, count in sentiment_counts.items(): if count >= 2: return sentiment return "Neutral" def detect_events(llm, text, entity): """ Detect events in news text. This function works with both API-based LLMs and local models. """ # Initialize default return values event_type = "Нет" summary = "" try: # Handle API-based LLMs (Groq, GPT-4, Qwen) if hasattr(llm, 'invoke'): template = """ Проанализируйте следующую новость о компании "{entity}" и определите наличие следующих событий: 1. Публикация отчетности и ключевые показатели (выручка, прибыль, EBITDA) 2. События на рынке ценных бумаг (погашение облигаций, выплата/невыплата купона, дефолт, реструктуризация) 3. Судебные иски или юридические действия против компании, акционеров, менеджеров Новость: {text} Ответьте в следующем формате: Тип: ["Отчетность" или "РЦБ" или "Суд" или "Нет"] Краткое описание: [краткое описание события на русском языке, не более 2 предложений] """ prompt = PromptTemplate(template=template, input_variables=["entity", "text"]) chain = prompt | llm response = chain.invoke({"entity": entity, "text": text}) response_text = response.content if hasattr(response, 'content') else str(response) if "Тип:" in response_text and "Краткое описание:" in response_text: type_part, summary_part = response_text.split("Краткое описание:") event_type_temp = type_part.split("Тип:")[1].strip() # Validate event type valid_types = ["Отчетность", "РЦБ", "Суд", "Нет"] if event_type_temp in valid_types: event_type = event_type_temp summary = summary_part.strip() # Handle local MT5 model else: # Assuming llm is FallbackLLMSystem instance event_type, summary = llm.detect_events(text, entity) except Exception as e: st.warning(f"Ошибка при анализе событий: {str(e)}") return event_type, summary def fuzzy_deduplicate(df, column, threshold=50): seen_texts = [] indices_to_keep = [] for i, text in enumerate(df[column]): if pd.isna(text): indices_to_keep.append(i) continue text = str(text) if not seen_texts or all(fuzz.ratio(text, seen) < threshold for seen in seen_texts): seen_texts.append(text) indices_to_keep.append(i) return df.iloc[indices_to_keep] def init_langchain_llm(model_choice): try: if model_choice == "Groq (llama-3.1-70b)": if 'groq_key' not in st.secrets: st.error("Groq API key not found in secrets. Please add it with the key 'groq_key'.") st.stop() return ChatOpenAI( base_url="https://api.groq.com/openai/v1", model="llama-3.1-70b-versatile", openai_api_key=st.secrets['groq_key'], temperature=0.0 ) elif model_choice == "ChatGPT-4-mini": if 'openai_key' not in st.secrets: st.error("OpenAI API key not found in secrets. Please add it with the key 'openai_key'.") st.stop() return ChatOpenAI( model="gpt-4", openai_api_key=st.secrets['openai_key'], temperature=0.0 ) elif model_choice == "Local-MT5": # Added new option return FallbackLLMSystem() else: # Qwen API if 'ali_key' not in st.secrets: st.error("DashScope API key not found in secrets. Please add it with the key 'dashscope_api_key'.") st.stop() return ChatOpenAI( base_url="https://dashscope.aliyuncs.com/api/v1", model="qwen-max", openai_api_key=st.secrets['ali_key'], temperature=0.0 ) except Exception as e: st.error(f"Error initializing the LLM: {str(e)}") st.stop() def estimate_impact(llm, news_text, entity): template = """ Analyze the following news piece about the entity "{entity}" and estimate its monetary impact in Russian rubles for this entity in the next 6 months. If precise monetary estimate is not possible, categorize the impact as one of the following: 1. "Значительный риск убытков" 2. "Умеренный риск убытков" 3. "Незначительный риск убытков" 4. "Вероятность прибыли" 5. "Неопределенный эффект" Provide brief reasoning (maximum 100 words). News: {news} Your response should be in the following format: Impact: [Your estimate or category] Reasoning: [Your reasoning] """ prompt = PromptTemplate(template=template, input_variables=["entity", "news"]) chain = prompt | llm response = chain.invoke({"entity": entity, "news": news_text}) impact = "Неопределенный эффект" reasoning = "Не удалось получить обоснование" # Extract content from response response_text = response.content if hasattr(response, 'content') else str(response) try: if "Impact:" in response_text and "Reasoning:" in response_text: impact_part, reasoning_part = response_text.split("Reasoning:") impact = impact_part.split("Impact:")[1].strip() reasoning = reasoning_part.strip() except Exception as e: st.error(f"Error parsing LLM response: {str(e)}") return impact, reasoning def format_elapsed_time(seconds): hours, remainder = divmod(int(seconds), 3600) minutes, seconds = divmod(remainder, 60) time_parts = [] if hours > 0: time_parts.append(f"{hours} час{'ов' if hours != 1 else ''}") if minutes > 0: time_parts.append(f"{minutes} минут{'' if minutes == 1 else 'ы' if 2 <= minutes <= 4 else ''}") if seconds > 0 or not time_parts: time_parts.append(f"{seconds} секунд{'а' if seconds == 1 else 'ы' if 2 <= seconds <= 4 else ''}") return " ".join(time_parts) def generate_sentiment_visualization(df): negative_df = df[df['Sentiment'] == 'Negative'] if negative_df.empty: st.warning("Не обнаружено негативных упоминаний. Отображаем общую статистику по объектам.") entity_counts = df['Объект'].value_counts() else: entity_counts = negative_df['Объект'].value_counts() if len(entity_counts) == 0: st.warning("Нет данных для визуализации.") return None fig, ax = plt.subplots(figsize=(12, max(6, len(entity_counts) * 0.5))) entity_counts.plot(kind='barh', ax=ax) ax.set_title('Количество негативных упоминаний по объектам') ax.set_xlabel('Количество упоминаний') plt.tight_layout() return fig def create_analysis_data(df): analysis_data = [] for _, row in df.iterrows(): if row['Sentiment'] == 'Negative': analysis_data.append([ row['Объект'], row['Заголовок'], 'РИСК УБЫТКА', row['Impact'], row['Reasoning'], row['Выдержки из текста'] ]) return pd.DataFrame(analysis_data, columns=[ 'Объект', 'Заголовок', 'Признак', 'Оценка влияния', 'Обоснование', 'Текст сообщения' ]) def create_output_file(df, uploaded_file, llm): wb = load_workbook("sample_file.xlsx") try: # Update 'Мониторинг' sheet with events ws = wb['Мониторинг'] row_idx = 4 for _, row in df.iterrows(): if row['Event_Type'] != 'Нет': ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F ws.cell(row=row_idx, column=7, value=row['Event_Type']) # Column G ws.cell(row=row_idx, column=8, value=row['Event_Summary']) # Column H ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I row_idx += 1 # Sort entities by number of negative publications entity_stats = pd.DataFrame({ 'Объект': df['Объект'].unique(), 'Всего': df.groupby('Объект').size(), 'Негативные': df[df['Sentiment'] == 'Negative'].groupby('Объект').size().fillna(0).astype(int), 'Позитивные': df[df['Sentiment'] == 'Positive'].groupby('Объект').size().fillna(0).astype(int) }).sort_values('Негативные', ascending=False) # Calculate most negative impact for each entity entity_impacts = {} for entity in df['Объект'].unique(): entity_df = df[df['Объект'] == entity] negative_impacts = entity_df[entity_df['Sentiment'] == 'Negative']['Impact'] entity_impacts[entity] = negative_impacts.iloc[0] if len(negative_impacts) > 0 else 'Неопределенный эффект' # Update 'Сводка' sheet ws = wb['Сводка'] for idx, (entity, row) in enumerate(entity_stats.iterrows(), start=4): ws.cell(row=idx, column=5, value=entity) # Column E ws.cell(row=idx, column=6, value=row['Всего']) # Column F ws.cell(row=idx, column=7, value=row['Негативные']) # Column G ws.cell(row=idx, column=8, value=row['Позитивные']) # Column H ws.cell(row=idx, column=9, value=entity_impacts[entity]) # Column I # Update 'Значимые' sheet ws = wb['Значимые'] row_idx = 3 for _, row in df.iterrows(): if row['Sentiment'] in ['Negative', 'Positive']: ws.cell(row=row_idx, column=3, value=row['Объект']) # Column C ws.cell(row=row_idx, column=4, value='релевантно') # Column D ws.cell(row=row_idx, column=5, value=row['Sentiment']) # Column E ws.cell(row=row_idx, column=6, value=row['Impact']) # Column F ws.cell(row=row_idx, column=7, value=row['Заголовок']) # Column G ws.cell(row=row_idx, column=8, value=row['Выдержки из текста']) # Column H row_idx += 1 # Copy 'Публикации' sheet original_df = pd.read_excel(uploaded_file, sheet_name='Публикации') ws = wb['Публикации'] for r_idx, row in enumerate(dataframe_to_rows(original_df, index=False, header=True), start=1): for c_idx, value in enumerate(row, start=1): ws.cell(row=r_idx, column=c_idx, value=value) # Update 'Анализ' sheet ws = wb['Анализ'] row_idx = 4 for _, row in df[df['Sentiment'] == 'Negative'].iterrows(): ws.cell(row=row_idx, column=5, value=row['Объект']) # Column E ws.cell(row=row_idx, column=6, value=row['Заголовок']) # Column F ws.cell(row=row_idx, column=7, value="Риск убытка") # Column G # Translate reasoning if it exists if pd.notna(row['Reasoning']): translated_reasoning = translate_reasoning_to_russian(llm, row['Reasoning']) ws.cell(row=row_idx, column=8, value=translated_reasoning) # Column H ws.cell(row=row_idx, column=9, value=row['Выдержки из текста']) # Column I row_idx += 1 # Update 'Тех.приложение' sheet tech_df = df[['Объект', 'Заголовок', 'Выдержки из текста', 'Translated', 'Sentiment', 'Impact', 'Reasoning']] if 'Тех.приложение' not in wb.sheetnames: wb.create_sheet('Тех.приложение') ws = wb['Тех.приложение'] for r_idx, row in enumerate(dataframe_to_rows(tech_df, index=False, header=True), start=1): for c_idx, value in enumerate(row, start=1): ws.cell(row=r_idx, column=c_idx, value=value) except Exception as e: st.warning(f"Ошибка при создании выходного файла: {str(e)}") output = io.BytesIO() wb.save(output) output.seek(0) return output def main(): with st.sidebar: st.title("::: AI-анализ мониторинга новостей (v.3.50):::") st.subheader("по материалам СКАН-ИНТЕРФАКС ") model_choice = st.radio( "Выберите модель для анализа:", ["Local-MT5", "Groq (llama-3.1-70b)", "ChatGPT-4-mini", "Qwen-Max"], key="model_selector", help="Local-MT5 работает без API ключей и ограничений" ) st.markdown( """ Использованы технологии: - Анализ естественного языка с помощью предтренированных нейросетей **BERT**,
- Дополнительная обработка при помощи больших языковых моделей (**LLM**),
- объединенные при помощи фреймворка **LangChain**.
""", unsafe_allow_html=True) with st.expander("ℹ️ Инструкция"): st.markdown(""" 1. Выберите модель для анализа 2. Выберите метод перевода 3. Загрузите Excel файл с новостями 4. Дождитесь завершения анализа 5. Скачайте результаты анализа в формате Excel """, unsafe_allow_html=True) st.markdown( """
denis.pokrovsky.npff
""", unsafe_allow_html=True ) st.title("Анализ мониторинга новостей") if 'processed_df' not in st.session_state: st.session_state.processed_df = None # Single file uploader with unique key uploaded_file = st.sidebar.file_uploader("Выбирайте Excel-файл", type="xlsx", key="unique_file_uploader") if uploaded_file is not None and st.session_state.processed_df is None: start_time = time.time() try: st.session_state.processed_df = process_file( uploaded_file, model_choice, translation_method='auto' ) if st.session_state.processed_df is not None: # Show preview with safe column access st.subheader("Предпросмотр данных") preview_columns = ['Объект', 'Заголовок'] if 'Sentiment' in st.session_state.processed_df.columns: preview_columns.append('Sentiment') if 'Impact' in st.session_state.processed_df.columns: preview_columns.append('Impact') preview_df = st.session_state.processed_df[preview_columns].head() st.dataframe(preview_df) # Show monitoring results st.subheader("Предпросмотр мониторинга событий и риск-факторов эмитентов") if 'Event_Type' in st.session_state.processed_df.columns: monitoring_df = st.session_state.processed_df[ (st.session_state.processed_df['Event_Type'] != 'Нет') & (st.session_state.processed_df['Event_Type'].notna()) ][['Объект', 'Заголовок', 'Event_Type', 'Event_Summary']].head() if len(monitoring_df) > 0: st.dataframe(monitoring_df) else: st.info("Не обнаружено значимых событий для мониторинга") # Create analysis data analysis_df = create_analysis_data(st.session_state.processed_df) st.subheader("Анализ") st.dataframe(analysis_df) else: st.error("Ошибка при обработке файла") except Exception as e: st.error(f"Ошибка при обработке файла: {str(e)}") st.session_state.processed_df = None output = create_output_file( st.session_state.processed_df, uploaded_file, init_langchain_llm(model_choice) # Initialize new LLM instance ) end_time = time.time() elapsed_time = end_time - start_time formatted_time = format_elapsed_time(elapsed_time) st.success(f"Обработка и анализ завершены за {formatted_time}.") st.download_button( label="Скачать результат анализа", data=output, file_name="результат_анализа.xlsx", mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet" ) if __name__ == "__main__": main()