import os, json, random import torch import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from huggingface_hub import login, hf_hub_download import pyreft import pyvene as pv from threading import Thread from typing import Iterator HF_TOKEN = os.environ.get("HF_TOKEN") login(token=HF_TOKEN) MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 256 # smaller default to save memory MAX_INPUT_TOKEN_LENGTH = 4096 def load_jsonl(jsonl_path): jsonl_data = [] with open(jsonl_path, 'r') as f: for line in f: data = json.loads(line) jsonl_data.append(data) return jsonl_data class Steer(pv.SourcelessIntervention): """Steer model via activation addition""" def __init__(self, **kwargs): super().__init__(**kwargs, keep_last_dim=True) self.proj = torch.nn.Linear( self.embed_dim, kwargs["latent_dim"], bias=False ) def forward(self, base, source=None, subspaces=None): if subspaces is None: return base steering_vec = [] avg_mag = sum(subspaces["mag"]) / len(subspaces["mag"]) for idx, mag in zip(subspaces["idx"], subspaces["mag"]): steering_vec.append(self.proj.weight[idx].unsqueeze(dim=0)) steering_vec = torch.cat(steering_vec, dim=0).mean(dim=0) steering_vec = avg_mag * steering_vec return base + steering_vec # Check GPU if not torch.cuda.is_available(): print("Warning: Running on CPU, may be slow.") # Load model & dictionary model_id = "google/gemma-2-2b-it" pv_model = None tokenizer = None concept_list = [] concept_id_map = {} if torch.cuda.is_available(): model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Download dictionary weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt") meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl") params = torch.load(weight_path).cuda() md = load_jsonl(meta_path) concept_list = [item["concept"] for item in md] concept_id_map = {} # the reason to reindex is because there is one concept that is missing. concept_reindex = 0 for item in md: concept_id_map[item["concept"]] = concept_reindex concept_reindex += 1 steer = Steer(embed_dim=params.shape[0], latent_dim=params.shape[1]) steer.proj.weight.data = params.float() pv_model = pv.IntervenableModel({ "component": f"model.layers[20].output", "intervention": steer}, model=model) terminators = [tokenizer.eos_token_id] if tokenizer else [] @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], subspaces_list: list[dict], max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS, ) -> Iterator[str]: # limit to last 4 turns start_idx = max(0, len(chat_history) - 4) recent_history = chat_history[start_idx:] # build list of messages messages = [] for rh in recent_history: messages.append({"role": rh["role"], "content": rh["content"]}) messages.append({"role": "user", "content": message}) input_ids = torch.tensor([tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True)]).cuda() # trim if needed if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] yield "[Truncated prior text]\n" streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) print(subspaces_list) generate_kwargs = { "base": {"input_ids": input_ids}, "unit_locations": None, "max_new_tokens": max_new_tokens, "intervene_on_prompt": True, "subspaces": [ { "idx": [int(sl["idx"]) for sl in subspaces_list], "mag": [int(sl["internal_mag"]) for sl in subspaces_list] } ] if subspaces_list else None, "streamer": streamer, "do_sample": True } t = Thread(target=pv_model.generate, kwargs=generate_kwargs) t.start() partial_text = [] for token_str in streamer: partial_text.append(token_str) yield "".join(partial_text) def _build_remove_choices(subspaces): return [f"(+{x['display_mag']:.1f}*) {x['text']}" for x in subspaces] def filter_concepts(search_text: str): if not search_text.strip(): return concept_list[:500] filtered = [c for c in concept_list if search_text.lower() in c.lower()] return filtered[:500] def add_concept_to_list(selected_concept, user_slider_val, current_list): if not selected_concept: return current_list, gr.update(choices=_build_remove_choices(current_list)) idx = concept_id_map[selected_concept] internal_mag = user_slider_val * 50 new_entry = { "text": selected_concept, "idx": idx, "display_mag": user_slider_val, "internal_mag": internal_mag, } # Add to the beginning of the list updated_list = [new_entry] + current_list return updated_list, gr.update(choices=_build_remove_choices(updated_list)) def remove_concept_from_list(selected_text, current_list): if not selected_text: return current_list, gr.update(choices=_build_remove_choices(current_list)) # Remove based on the full formatted text updated_list = [x for x in current_list if f"(+{x['display_mag']:.1f}*) {x['text']}" != selected_text] return updated_list, gr.update(choices=_build_remove_choices(updated_list)) def update_dropdown_choices(search_text): filtered = filter_concepts(search_text) return gr.update(choices=filtered) with gr.Blocks(css="style.css") as demo: # Remove default subspaces selected_subspaces = gr.State([]) with gr.Row(): # Left side: bigger chat area with gr.Column(scale=7): chat_interface = gr.ChatInterface( fn=generate, title="Language Model Concept Steering", description="Steer responses by selecting concepts on the right →", type="messages", additional_inputs=[selected_subspaces], ) # Right side: concept management with gr.Column(scale=3): gr.Markdown("## Steer Model Responses") # Concept Search and Selection with gr.Group(): search_box = gr.Textbox( label="Search Concepts", placeholder="Find concepts to steer the model (e.g. 'time travel')", ) concept_dropdown = gr.Dropdown( label="Select a Concept", interactive=True, ) concept_magnitude = gr.Slider( label="Steering Intensity", minimum=-5, maximum=5, step=0.1, # Allow 1 decimal point value=3, ) add_button = gr.Button("Add Concept to Steering") # Current Steering Concepts gr.Markdown("## Current Steering Concepts") with gr.Group(): remove_dropdown = gr.Dropdown( label="Select a Current Steering Concept to Stop", choices=[], multiselect=False, ) remove_button = gr.Button("Remove Current Steering Concept", variant="secondary") # Wire up events # When the search box changes, update the concept dropdown choices: search_box.change( update_dropdown_choices, [search_box], [concept_dropdown] ) # When "Add Concept" is clicked, add the concept + magnitude to the list, # and update the "Remove" dropdown choices. add_button.click( add_concept_to_list, [concept_dropdown, concept_magnitude, selected_subspaces], [selected_subspaces, remove_dropdown] ) # When "Remove" is clicked, remove the selected concept from the list, # and update the "Remove" dropdown choices. remove_button.click( remove_concept_from_list, [remove_dropdown, selected_subspaces], [selected_subspaces, remove_dropdown] ) demo.launch(share=True)