import os, json, random import torch import gradio as gr import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from huggingface_hub import login, hf_hub_download import pyreft import pyvene as pv from threading import Thread from typing import Iterator HF_TOKEN = os.environ.get("HF_TOKEN") login(token=HF_TOKEN) MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 256 # smaller default to save memory MAX_INPUT_TOKEN_LENGTH = 4096 def load_jsonl(jsonl_path): jsonl_data = [] with open(jsonl_path, 'r') as f: for line in f: data = json.loads(line) jsonl_data.append(data) return jsonl_data class Steer(pv.SourcelessIntervention): """Steer model via activation addition""" def __init__(self, **kwargs): super().__init__(**kwargs, keep_last_dim=True) self.proj = torch.nn.Linear( self.embed_dim, kwargs["latent_dim"], bias=False ) def forward(self, base, source=None, subspaces=None): if subspaces is None: return base steering_vec = [] avg_mag = sum(subspaces["mag"]) / len(subspaces["mag"]) for idx, mag in zip(subspaces["idx"], subspaces["mag"]): steering_vec.append(self.proj.weight[idx].unsqueeze(dim=0)) steering_vec = torch.cat(steering_vec, dim=0).mean(dim=0) steering_vec = avg_mag * steering_vec return base + steering_vec # Check GPU if not torch.cuda.is_available(): print("Warning: Running on CPU, may be slow.") # Load model & dictionary model_id = "google/gemma-2-2b-it" pv_model = None tokenizer = None concept_list = [] concept_id_map = {} if torch.cuda.is_available(): model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(model_id) # Download dictionary weight_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/weight.pt") meta_path = hf_hub_download(repo_id="pyvene/gemma-reft-2b-it-res", filename="l20/metadata.jsonl") params = torch.load(weight_path).cuda() md = load_jsonl(meta_path) concept_list = [item["concept"] for item in md] concept_id_map = {} # the reason to reindex is because there is one concept that is missing. concept_reindex = 0 for item in md: concept_id_map[item["concept"]] = concept_reindex concept_reindex += 1 steer = Steer(embed_dim=params.shape[0], latent_dim=params.shape[1]) steer.proj.weight.data = params.float() pv_model = pv.IntervenableModel({ "component": f"model.layers[20].output", "intervention": steer}, model=model) terminators = [tokenizer.eos_token_id] if tokenizer else [] @spaces.GPU def generate( message: str, chat_history: list[tuple[str, str]], subspaces_list: list[dict], max_new_tokens: int=DEFAULT_MAX_NEW_TOKENS, ) -> Iterator[str]: # limit to last 4 turns start_idx = max(0, len(chat_history) - 4) recent_history = chat_history[start_idx:] # build list of messages messages = [] for rh in recent_history: messages.append({"role": rh["role"], "content": rh["content"]}) messages.append({"role": "user", "content": message}) input_ids = torch.tensor([tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True)]).cuda() # trim if needed if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] yield "[Truncated prior text]\n" streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) print(subspaces_list) generate_kwargs = { "base": {"input_ids": input_ids}, "unit_locations": None, "max_new_tokens": max_new_tokens, "intervene_on_prompt": True, "subspaces": [ { "idx": [int(sl["idx"]) for sl in subspaces_list], "mag": [int(sl["internal_mag"]) for sl in subspaces_list] } ] if subspaces_list else None, "streamer": streamer, "do_sample": True } t = Thread(target=pv_model.generate, kwargs=generate_kwargs) t.start() partial_text = [] for token_str in streamer: partial_text.append(token_str) yield "".join(partial_text) def _build_remove_choices(subspaces): return [f"(+{x['display_mag']:.1f}*) {x['text']}" for x in subspaces] def filter_concepts(search_text: str): if not search_text.strip(): return concept_list[:500] filtered = [c for c in concept_list if search_text.lower() in c.lower()] return filtered[:500] def add_concept_to_list(selected_concept, user_slider_val, current_list): if not selected_concept: return current_list, gr.update(choices=_build_remove_choices(current_list)) idx = concept_id_map[selected_concept] internal_mag = user_slider_val * 50 new_entry = { "text": selected_concept, "idx": idx, "display_mag": user_slider_val, "internal_mag": internal_mag, } # Add to the beginning of the list current_list = [new_entry] return current_list def update_dropdown_choices(search_text): filtered = filter_concepts(search_text) if not filtered: return gr.update(choices=[], value=None, interactive=True) # Automatically select the first matching concept return gr.update( choices=filtered, value=filtered[0], # Select the first match interactive=True ) with gr.Blocks(fill_height=True) as demo: # Remove default subspaces selected_subspaces = gr.State([]) with gr.Row(min_height=700): # Left side: bigger chat area with gr.Column(scale=6): chat_interface = gr.ChatInterface( fn=generate, title="Chat with a Concept Steering Model", description="Steer responses by selecting concepts on the right →", type="messages", additional_inputs=[selected_subspaces], fill_height=True ) # Right side: concept management with gr.Column(scale=4): gr.Markdown("## Steer Model Responses") gr.Markdown("Search and then select a concept to steer. The closest match will be automatically selected.") # Concept Search and Selection with gr.Group(): search_box = gr.Textbox( label="Search Concepts", placeholder="Find concepts to steer the model (e.g. 'time travel')", lines=2, ) concept_dropdown = gr.Dropdown( label="Select a concept to steer the model (Click to see more!)", interactive=True, allow_custom_value=False ) concept_magnitude = gr.Slider( label="Steering Intensity", minimum=-5, maximum=5, step=0.1, value=3, ) # Wire up events # When search box changes, update dropdown AND trigger concept selection search_box.change( update_dropdown_choices, [search_box], [concept_dropdown] ).then( # Chain the events to automatically add the concept add_concept_to_list, [concept_dropdown, concept_magnitude, selected_subspaces], [selected_subspaces] ) concept_dropdown.select( add_concept_to_list, [concept_dropdown, concept_magnitude, selected_subspaces], [selected_subspaces] ) concept_magnitude.input( add_concept_to_list, [concept_dropdown, concept_magnitude, selected_subspaces], [selected_subspaces] ) demo.launch(share=True)