better layout
Browse files- README.md +1 -1
- app.py +67 -21
- requirements.txt +1 -1
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: πΒ π΅βπ«Β π
|
|
4 |
colorFrom: green
|
5 |
colorTo: black
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 2.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: green
|
5 |
colorTo: black
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 2.9b22
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -5,10 +5,9 @@ import torch
|
|
5 |
import numpy as np
|
6 |
from PIL import Image, ImageOps
|
7 |
from pathlib import Path
|
8 |
-
import os
|
9 |
import glob
|
10 |
from autostereogram.sirds_converter import SirdsConverter
|
11 |
-
from
|
12 |
|
13 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
14 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
@@ -46,28 +45,75 @@ def process_image(image_path):
|
|
46 |
stereo_image = stereo_converter.convert_depth_to_stereogram_with_sird(
|
47 |
depth_image_padded, False, 0.5).astype(np.uint8)
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
-
|
53 |
-
description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then reconstruct the 3D model as voxels."
|
54 |
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
-
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image, ImageOps
|
7 |
from pathlib import Path
|
|
|
8 |
import glob
|
9 |
from autostereogram.sirds_converter import SirdsConverter
|
10 |
+
from datetime import datetime
|
11 |
|
12 |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
|
13 |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
|
|
|
45 |
stereo_image = stereo_converter.convert_depth_to_stereogram_with_sird(
|
46 |
depth_image_padded, False, 0.5).astype(np.uint8)
|
47 |
|
48 |
+
stereo_image_pil = Image.fromarray(stereo_image).convert('RGB')
|
49 |
+
image_name = f'stereo_image_{datetime.now().strftime("%Y%m%d_%H%M%S")}.jpg'
|
50 |
+
stereo_image_pil.save(image_name)
|
51 |
+
return [depth_image_padded, stereo_image, image_name]
|
52 |
|
53 |
|
54 |
+
examples_images = [[f] for f in sorted(glob.glob('examples/*.jpg'))]
|
|
|
55 |
|
56 |
+
blocks = gr.Blocks()
|
57 |
|
58 |
+
input_image = gr.Image(type="filepath", label="Input Image")
|
59 |
+
predicted_depth = gr.Image(label="Predicted Depth", type="pil")
|
60 |
+
autostereogram = gr.Image(label="Autostereogram", type="pil")
|
61 |
+
file_download = gr.File(label="Download Image")
|
62 |
+
|
63 |
+
|
64 |
+
def load_example(example_id):
|
65 |
+
processed_examples = [
|
66 |
+
component.preprocess_example(sample)
|
67 |
+
for component, sample in zip(
|
68 |
+
[input_image], examples_images[example_id]
|
69 |
+
)
|
70 |
+
]
|
71 |
+
if len(processed_examples) == 1:
|
72 |
+
return processed_examples[0]
|
73 |
+
else:
|
74 |
+
return processed_examples
|
75 |
+
|
76 |
+
|
77 |
+
with blocks:
|
78 |
+
gr.Markdown('''
|
79 |
+
## Depth Image to Autostereogram (Magic Eye)
|
80 |
+
This demo is a variation from the original [DPT Demo](https://huggingface.co/spaces/nielsr/dpt-depth-estimation).
|
81 |
+
Zero-shot depth estimation from an image, then it uses [pystereogram](https://github.com/yxiao1996/pystereogram)
|
82 |
+
to generate the autostereogram (Magic Eye)
|
83 |
+
<base target="_blank">
|
84 |
+
|
85 |
+
''')
|
86 |
+
|
87 |
+
with gr.Row():
|
88 |
+
examples_c = gr.components.Dataset(
|
89 |
+
components=[input_image],
|
90 |
+
samples=examples_images,
|
91 |
+
type="index",
|
92 |
+
)
|
93 |
+
|
94 |
+
examples_c._click_no_postprocess(
|
95 |
+
load_example,
|
96 |
+
inputs=[examples_c],
|
97 |
+
outputs=[input_image])
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
with gr.Column():
|
101 |
+
button = gr.Button("Predict")
|
102 |
+
button.click(fn=process_image, inputs=[input_image],
|
103 |
+
outputs=[predicted_depth,
|
104 |
+
autostereogram, file_download],
|
105 |
+
)
|
106 |
+
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column():
|
109 |
+
input_image.render()
|
110 |
+
with gr.Column():
|
111 |
+
predicted_depth.render()
|
112 |
+
with gr.Row():
|
113 |
+
autostereogram.render()
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Column():
|
116 |
+
file_download.render()
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
+
blocks.launch(debug=True)
|
requirements.txt
CHANGED
@@ -2,7 +2,7 @@ torch
|
|
2 |
git+https://github.com/nielsrogge/transformers.git@add_dpt_redesign#egg=transformers
|
3 |
numpy
|
4 |
Pillow
|
5 |
-
gradio==2.
|
6 |
jinja2
|
7 |
transformers
|
8 |
scikit-image
|
|
|
2 |
git+https://github.com/nielsrogge/transformers.git@add_dpt_redesign#egg=transformers
|
3 |
numpy
|
4 |
Pillow
|
5 |
+
gradio==2.9b22
|
6 |
jinja2
|
7 |
transformers
|
8 |
scikit-image
|