Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification, pipeline
|
3 |
+
import torch
|
4 |
+
import plotly.express as px
|
5 |
+
import numpy as np
|
6 |
+
from utils import visualize_attention, list_supported_models
|
7 |
+
|
8 |
+
st.set_page_config(page_title="Transformer Visualizer", layout="wide")
|
9 |
+
|
10 |
+
st.title("🧠 Transformer Visualizer")
|
11 |
+
st.markdown("Explore how Transformer models process and understand language.")
|
12 |
+
|
13 |
+
task = st.sidebar.selectbox("Select Task", ["Text Classification", "Text Generation", "Question Answering"])
|
14 |
+
model_name = st.sidebar.selectbox("Select Model", list_supported_models(task))
|
15 |
+
|
16 |
+
text_input = st.text_area("Enter input text", "The quick brown fox jumps over the lazy dog.")
|
17 |
+
|
18 |
+
if st.button("Run"):
|
19 |
+
st.info(f"Loading model: `{model_name}`...")
|
20 |
+
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
|
23 |
+
if task == "Text Classification":
|
24 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, output_attentions=True)
|
25 |
+
else:
|
26 |
+
model = AutoModel.from_pretrained(model_name, output_attentions=True)
|
27 |
+
|
28 |
+
inputs = tokenizer(text_input, return_tensors="pt")
|
29 |
+
outputs = model(**inputs)
|
30 |
+
attentions = outputs.attentions
|
31 |
+
|
32 |
+
st.success("Model inference complete!")
|
33 |
+
|
34 |
+
if attentions:
|
35 |
+
st.subheader("Attention Visualization")
|
36 |
+
fig = visualize_attention(attentions, tokenizer, inputs)
|
37 |
+
st.plotly_chart(fig, use_container_width=True)
|
38 |
+
else:
|
39 |
+
st.warning("This model does not return attention weights.")
|
40 |
+
|
41 |
+
if task == "Text Classification":
|
42 |
+
st.subheader("Prediction")
|
43 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
44 |
+
prediction = pipe(text_input)
|
45 |
+
st.write(prediction)
|
46 |
+
|
47 |
+
st.sidebar.markdown("---")
|
48 |
+
st.sidebar.write("App by Rahiya Esar 💖")
|