File size: 25,481 Bytes
bdb955e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 |
from typing import Tuple, Dict, Union
from pytorch_lightning import LightningModule
import torch
import kornia
import torch.nn as nn
from .utils.data_distr import FeatureScalerZScore
class CameraParameterWLensDistDictZScore(LightningModule):
"""Holds individual camera parameters including lens distortion parameters as nn.Modul"""
def __init__(self, cam_distr, dist_distr, device="cpu"):
super(CameraParameterWLensDistDictZScore, self).__init__()
self.cam_distr = cam_distr
self._device = device
# phi raw
self.param_dict = torch.nn.ParameterDict(
{
k: torch.nn.parameter.Parameter(
torch.zeros(
*cam_distr[k]["dimension"],
device=device,
),
requires_grad=False
if ("no_grad" in cam_distr[k]) and (cam_distr[k]["no_grad"] == True)
else True,
)
for k in cam_distr.keys()
}
)
# denormalization module to get phi_target
self.feature_scaler = torch.nn.ModuleDict(
{k: FeatureScalerZScore(*cam_distr[k]["mean_std"]) for k in cam_distr.keys()}
)
self.dist_distr = dist_distr
if self.dist_distr is not None:
self.param_dict_dist = torch.nn.ParameterDict(
{
k: torch.nn.Parameter(torch.zeros(*dist_distr[k]["dimension"], device=device))
for k in dist_distr.keys()
}
)
# TODO: modify later to dynamically cunstruct a tensor of shape (k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])
#
self.feature_scaler_dist_coeff = torch.nn.ModuleDict(
{k: FeatureScalerZScore(*dist_distr[k]["mean_std"]) for k in dist_distr.keys()}
)
def initialize(
self,
update_dict_cam: Union[Dict[str, Union[float, torch.tensor]], None],
update_dict_dist=None,
):
"""Initializes all camera parameters with zeros and replace specific values with provided values
Args:
update_dict_cam (Dict[str, Union[float, torch.tensor]]): Parameters to be updated
"""
for k in self.param_dict.keys():
self.param_dict[k].data = torch.zeros(
*self.cam_distr[k]["dimension"], device=self._device
)
if self.dist_distr is not None:
for k in self.dist_distr.keys():
self.param_dict_dist[k].data = torch.zeros(
*self.dist_distr[k]["dimension"], device=self._device
)
if update_dict_cam is not None and len(update_dict_cam) > 0:
for k, v in update_dict_cam.items():
self.param_dict[k].data = (
torch.zeros(*self.cam_distr[k]["dimension"], device=self._device) + v
)
if update_dict_dist is not None:
raise NotImplementedError
def forward(self):
phi_dict = {}
for k, param in self.param_dict.items():
phi_dict[k] = self.feature_scaler[k](param)
if self.dist_distr is None:
return phi_dict, None
# This is a vector with 4, 5, 8, 12 or 14 elements with shape :math:`(*, n)` depending on the provided dict of coefficients
# assumes dict is ordered according (k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])
psi = torch.stack(
[
torch.clamp(
self.feature_scaler_dist_coeff[k](param),
min=self.dist_distr[k]["minmax"][0],
max=self.dist_distr[k]["minmax"][1],
)
for k, param in self.param_dict_dist.items()
],
dim=-1, # stack individual features and not arbirary leading dimensions
)
return phi_dict, psi
class SNProjectiveCamera:
def __init__(
self,
phi_dict: Dict[str, torch.tensor],
psi: torch.tensor,
principal_point: Tuple[float, float],
image_width: int,
image_height: int,
device: str = "cpu",
nan_check=True,
) -> None:
"""Projective camera defined as K @ R [I|-t] with lens distortion module and batch dimensions B,T.
Following Euler angles convention, we use a ZXZ succession of intrinsic rotations in order to describe
the orientation of the camera. Starting from the world reference axis system, we first apply a rotation
around the Z axis to pan the camera. Then the obtained axis system is rotated around its x axis in order to tilt the camera.
Then the last rotation around the z axis of the new axis system alows to roll the camera. Note that this z axis is the principal axis of the camera.
As T is not provided for camra location and lens distortion, these parameters are assumed to be fixed accross T.
phi_dict is a dict of parameters containing:
{
'aov_x, torch.Size([B, T])',
'pan, torch.Size([B, T])',
'tilt, torch.Size([B, T])',
'roll, torch.Size([B, T])',
'c_x, torch.Size([B, 1])',
'c_y, torch.Size([B, 1])',
'c_z, torch.Size([B, 1])',
}
Internally fuses B and T dimension to pseudo batch dimension.
{
'aov_x, torch.Size([B*T])',
'pan, torch.Size([B*T])',
'tilt, torch.Size([B*T])'
'roll, torch.Size([B*T])',
'c_x, torch.Size([B])',
'c_y, torch.Size([B])',
'c_z, torch.Size([B])',
}
aov_x, pan, tilt, roll are assumed in radian.
Note on lens distortion:
Lens distortion coefficients are independent from image resolution!
We I(dist_points(K_ndc, dist_coeff, points2d_ndc)) == I(dist_points(K_raster, dist_coeff, points2d_raster))
Args:
phi_dict (Dict[str, torch.tensor]): See example above
psi (Union[None, torch.Tensor]): distortion coefficients as concatinated vector according to https://kornia.readthedocs.io/en/latest/geometry.calibration.html of shape (B, T, {2, 4, 5,8,12, 14})
principal_point (Tuple[float, float]): Principal point assumed to be fixed across all samples (B,T,)
image_width (int): assumed to be fixed across all samples (B,T,)
image_height (int): assumed to be fixed across all samples (B,T,)
"""
# fuse B and T dimension
phi_dict_flat = {}
for k, v in phi_dict.items():
if len(v.shape) == 2:
phi_dict_flat[k] = v.view(v.shape[0] * v.shape[1])
elif len(v.shape) == 3:
phi_dict_flat[k] = v.view(v.shape[0] * v.shape[1], v.shape[-1])
self.batch_dim, self.temporal_dim = phi_dict["pan"].shape
self.pseudo_batch_size = phi_dict_flat["pan"].shape[0]
self.phi_dict_flat = phi_dict_flat
self.principal_point = principal_point
self.image_width = image_width
self.image_height = image_height
self.device = device
self.psi = psi
if self.psi is not None:
if self.psi.shape[-1] != 2:
raise NotImplementedError
# :math:`(k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])`.
# psi is a vector with 2, 4, 5, 8, 12 or 14 elements with shape :math:`(*, n)`.
if self.psi.shape[-1] == 2:
# assume zero tangential coefficients
psi_ext = torch.zeros(*list(self.psi.shape[:-1]), 4)
psi_ext[..., :2] = self.psi
self.psi = psi_ext
self.lens_dist_coeff = self.psi.view(self.pseudo_batch_size, self.psi.shape[-1]).to(
self.device
)
self.intrinsics_ndc = self.construct_intrinsics_ndc()
self.intrinsics_raster = self.construct_intrinsics_raster()
self.rotation = self.rotation_from_euler_angles(
*[phi_dict_flat[k] for k in ["pan", "tilt", "roll"]]
)
self.position = torch.stack([phi_dict_flat[k] for k in ["c_x", "c_y", "c_z"]], dim=-1)
self.position = self.position.repeat_interleave(
int(self.pseudo_batch_size / self.batch_dim), dim=0
) # (B, 3) # TODO: probably needs modification if B > 0?
self.P_ndc = self.construct_projection_matrix(self.intrinsics_ndc)
self.P_raster = self.construct_projection_matrix(self.intrinsics_raster)
self.phi_dict = phi_dict
self.nan_check = nan_check
super().__init__()
def construct_projection_matrix(self, intrinsics):
It = torch.eye(4, device=self.device)[:-1].repeat(self.pseudo_batch_size, 1, 1)
It[:, :, -1] = -self.position # (B, 3, 4)
self.It = It
return intrinsics @ self.rotation @ It # # (B, 3, 4)
def construct_intrinsics_ndc(self):
# assume that the principal point is (0,0)
K = torch.eye(3, requires_grad=False, device=self.device)
K = K.reshape((1, 3, 3)).repeat(self.pseudo_batch_size, 1, 1)
K[:, 0, 0] = self.get_fl_from_aov_rad(self.phi_dict_flat["aov"], d=2)
K[:, 1, 1] = self.get_fl_from_aov_rad(
self.phi_dict_flat["aov"], d=2 * self.image_width / self.image_height
)
return K
def construct_intrinsics_raster(self):
# assume that the principal point is (W/2,H/2)
K = torch.eye(3, requires_grad=False, device=self.device)
K = K.reshape((1, 3, 3)).repeat(self.pseudo_batch_size, 1, 1)
K[:, 0, 0] = self.get_fl_from_aov_rad(self.phi_dict_flat["aov"], d=self.image_width)
K[:, 1, 1] = self.get_fl_from_aov_rad(self.phi_dict_flat["aov"], d=self.image_width)
K[:, 0, 2] = self.principal_point[0]
K[:, 1, 2] = self.principal_point[1]
return K
def __str__(self) -> str:
return f"aov_deg={torch.rad2deg(self.phi_dict['aov'])}, t={torch.stack([self.phi_dict[k] for k in ['c_x', 'c_y', 'c_z']], dim=-1)}, pan_deg={torch.rad2deg(self.phi_dict['pan'])} tilt_deg={torch.rad2deg(self.phi_dict['tilt'])} roll_deg={torch.rad2deg(self.phi_dict['roll'])}"
def str_pan_tilt_roll_fl(self, b, t):
r = f"FOV={torch.rad2deg(self.phi_dict['aov'][b, t]):.1f}°, pan={torch.rad2deg(self.phi_dict['pan'][b, t]):.1f}° tilt={torch.rad2deg(self.phi_dict['tilt'][b, t]):.1f}° roll={torch.rad2deg(self.phi_dict['roll'][b, t]):.1f}°"
return r
def str_lens_distortion_coeff(self, b):
# TODO: T! also need indivudual lens_dist_coeff for each t in T
# print(self.lens_dist_coeff.shape)
return f"lens dist coeff=" + " ".join(
[f"{x:.2f}" for x in self.lens_dist_coeff[b, :2]]
) # print only radial lens dist. coeff
def __repr__(self) -> str:
return f"{self.__class__}:" + self.__str__()
def __len__(self):
return self.pseudo_batch_size # e.g. self.intrinsics.shape[0]
def project_point2pixel(self, points3d: torch.tensor, lens_distortion: bool) -> torch.tensor:
"""Project world coordinates to pixel coordinates.
Args:
points3d (torch.tensor): of shape (N, 3) or (1, N, 3)
Returns:
torch.tensor: projected points of shape (B, T, N, 2)
"""
position = self.position.view(self.pseudo_batch_size, 1, 3)
point = points3d - position
rotated_point = self.rotation @ point.transpose(1, 2) # (pseudo_batch_size, 3, N)
dist_point2cam = rotated_point[:, 2] # (B, N) distance pixel to world point
dist_point2cam = dist_point2cam.view(self.pseudo_batch_size, 1, rotated_point.shape[-1])
rotated_point = rotated_point / dist_point2cam # (B, 3, N) / (B, 1, N) -> (B, 3, N)
projected_points = self.intrinsics_raster @ rotated_point # (B, 3, N)
# transpose vs view? here
projected_points = projected_points.transpose(-1, -2) # cannot use view()
projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
if lens_distortion:
if self.psi is None:
raise RuntimeError("Lens distortion requested, but deactivated in module")
projected_points = self.distort_points(projected_points, self.intrinsics_raster)
# reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
projected_points = projected_points.view(
self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
)
if self.nan_check:
if torch.isnan(projected_points).any().item():
print(self.phi_dict_flat)
print(projected_points)
raise RuntimeWarning("NaN in project_point2pixel")
return projected_points
def project_point2ndc(self, points3d: torch.tensor, lens_distortion: bool) -> torch.tensor:
"""Project world coordinates to pixel coordinates.
Args:
points3d (torch.tensor): of shape (N, 3) or (1, N, 3)
Returns:
torch.tensor: projected points of shape (B, T, N, 2)
"""
position = self.position.view(self.pseudo_batch_size, 1, 3)
point = points3d - position
rotated_point = self.rotation @ point.transpose(1, 2) # (pseudo_batch_size, 3, N)
dist_point2cam = rotated_point[:, 2] # (B, N) distance pixel to world point
dist_point2cam = dist_point2cam.view(self.pseudo_batch_size, 1, rotated_point.shape[-1])
rotated_point = rotated_point / dist_point2cam # (B, 3, N) / (B, 1, N) -> (B, 3, N)
projected_points = self.intrinsics_ndc @ rotated_point # (B, 3, N)
# transpose vs view? here
projected_points = projected_points.transpose(-1, -2) # cannot use view()
projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
if self.nan_check:
if torch.isnan(projected_points).any().item():
print(projected_points)
print(self.phi_dict_flat)
print("lens distortion", self.lens_dist_coeff)
raise RuntimeWarning("NaN in project_point2ndc before distort")
if lens_distortion:
if self.psi is None:
raise RuntimeError("Lens distortion requested, but deactivated in module")
projected_points = self.distort_points(projected_points, self.intrinsics_ndc)
# reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
projected_points = projected_points.view(
self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
)
if self.nan_check:
if torch.isnan(projected_points).any().item():
print(self.phi_dict_flat)
print(projected_points)
raise RuntimeWarning("NaN in project_point2ndc after distort")
return projected_points
def project_point2pixel_from_P(
self, points3d: torch.tensor, lens_distortion: bool
) -> torch.tensor:
"""Project world coordinates to pixel coordinates from the projection matrix.
Args:
points3d (torch.tensor): of shape (1, N, 3)
Returns:
torch.tensor: projected points of shape (B, T, N, 2)
"""
points3d = kornia.geometry.conversions.convert_points_to_homogeneous(points3d).transpose(
1, 2
) # (B, 4, N)
projected_points = torch.bmm(self.P_raster, points3d.repeat(self.pseudo_batch_size, 1, 1))
normalize_by = projected_points[:, -1].view(
self.pseudo_batch_size, 1, projected_points.shape[-1]
)
projected_points /= normalize_by
projected_points = projected_points.transpose(-1, -2) # cannot use view()
projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
if lens_distortion:
if self.psi is None:
raise RuntimeError("Lens distortion requested, but deactivated in module")
projected_points = self.distort_points(projected_points, self.intrinsics_raster)
# reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
projected_points = projected_points.view(
self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
)
return projected_points # (B, T, N, 2)
def project_point2ndc_from_P(
self, points3d: torch.tensor, lens_distortion: bool
) -> torch.tensor:
"""Project world coordinates to pixel coordinates from the projection matrix.
Args:
points3d (torch.tensor): of shape (1, N, 3)
Returns:
torch.tensor: projected points of shape (B, T, N, 2)
"""
points3d = kornia.geometry.conversions.convert_points_to_homogeneous(points3d).transpose(
1, 2
) # (B, 4, N)
projected_points = torch.bmm(self.P_ndc, points3d.repeat(self.pseudo_batch_size, 1, 1))
normalize_by = projected_points[:, -1].view(
self.pseudo_batch_size, 1, projected_points.shape[-1]
)
projected_points /= normalize_by
projected_points = projected_points.transpose(-1, -2) # cannot use view()
projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
if lens_distortion:
if self.psi is None:
raise RuntimeError("Lens distortion requested, but deactivated in module")
projected_points = self.distort_points(projected_points, self.intrinsics_ndc)
# reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
projected_points = projected_points.view(
self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
)
return projected_points # (B, T, N, 2)
def rotation_from_euler_angles(self, pan, tilt, roll):
# rotation matrices from a batch of pan tilt roll [rad] vectors of shape (?, )
mask = (
torch.eye(3, requires_grad=False, device=self.device)
.reshape((1, 3, 3))
.repeat(pan.shape[0], 1, 1)
)
mask[:, 0, 0] = -torch.sin(pan) * torch.sin(roll) * torch.cos(tilt) + torch.cos(
pan
) * torch.cos(roll)
mask[:, 0, 1] = torch.sin(pan) * torch.cos(roll) + torch.sin(roll) * torch.cos(
pan
) * torch.cos(tilt)
mask[:, 0, 2] = torch.sin(roll) * torch.sin(tilt)
mask[:, 1, 0] = -torch.sin(pan) * torch.cos(roll) * torch.cos(tilt) - torch.sin(
roll
) * torch.cos(pan)
mask[:, 1, 1] = -torch.sin(pan) * torch.sin(roll) + torch.cos(pan) * torch.cos(
roll
) * torch.cos(tilt)
mask[:, 1, 2] = torch.sin(tilt) * torch.cos(roll)
mask[:, 2, 0] = torch.sin(pan) * torch.sin(tilt)
mask[:, 2, 1] = -torch.sin(tilt) * torch.cos(pan)
mask[:, 2, 2] = torch.cos(tilt)
return mask
def get_homography_raster(self):
return self.P_raster[:, :, [0, 1, 3]].inverse()
def get_rays_world(self, x):
"""_summary_
Args:
x (_type_): x of shape (B, 3, N)
Returns:
LineCollection: _description_
"""
raise NotImplementedError
# TODO: verify
# ray_cam_trans = torch.bmm(self.rotation.inverse(), torch.bmm(self.intrinsics.inverse(), x))
# # unnormalized direction vector in euclidean points (x,y,z) based on camera origin (0,0,0)
# ray_cam_trans = torch.nn.functional.normalize(ray_cam_trans, p=2, dim=1) # (B, 3, N)
# # shift support vector to origin in world space, i.e. the translation vector
# support = self.position.unsqueeze(-1).repeat(
# ray_cam_trans.shape[0], 1, ray_cam_trans.shape[2]
# ) # (B, 3, N)
# return LineCollection(support=support, direction_norm=ray_cam_trans)
@staticmethod
def get_aov_rad(d: float, fl: torch.tensor):
# https://en.wikipedia.org/wiki/Angle_of_view#Calculating_a_camera's_angle_of_view
return 2 * torch.arctan(d / (2 * fl)) # in range [0.0, PI]
@staticmethod
def get_fl_from_aov_rad(aov_rad: torch.tensor, d: float):
return 0.5 * d * (1 / torch.tan(0.5 * aov_rad))
def undistort_points(self, points_pixel: torch.tensor, intrinsics, num_iters=5) -> torch.tensor:
"""Compensate for lens distortion a set of 2D image points.
Wrapper for kornia.geometry.undistort_points()
Args:
points_pixel (torch.tensor): tensor of shape (B, N, 2)
Returns:
torch.tensor: undistorted points of shape (B, N, 2)
"""
# print(points_pixel.shape, intrinsics.shape, self.lens_dist_coeff.shape)
batch_dim, temporal_dim, N, _ = points_pixel.shape
points_pixel = points_pixel.view(batch_dim * temporal_dim, N, 2)
true_batch_size = batch_dim
lens_dist_coeff = self.lens_dist_coeff
if true_batch_size < self.batch_dim:
intrinsics = intrinsics[:true_batch_size]
lens_dist_coeff = lens_dist_coeff[:true_batch_size]
return kornia.geometry.undistort_points(
points_pixel, intrinsics, dist=lens_dist_coeff, num_iters=num_iters
).view(batch_dim, temporal_dim, N, 2)
def distort_points(self, points_pixel: torch.tensor, intrinsics) -> torch.tensor:
"""Distortion of a set of 2D points based on the lens distortion model.
Wrapper for kornia.geometry.distort_points()
Args:
points_pixel (torch.tensor): tensor of shape (B, N, 2)
Returns:
torch.tensor: distorted points of shape (B, N, 2)
"""
return kornia.geometry.distort_points(points_pixel, intrinsics, dist=self.lens_dist_coeff)
def undistort_images(self, images):
# images of shape (B, T, C, H, W)
true_batch_size, T = images.shape[:2]
images = images.view(true_batch_size * T, 3, self.image_height, self.image_width).to(
self.device
)
intrinsics = self.intrinsics_raster
lens_dist_coeff = self.lens_dist_coeff
if true_batch_size < self.batch_dim:
intrinsics = intrinsics[:true_batch_size]
lens_dist_coeff = lens_dist_coeff[:true_batch_size]
return kornia.geometry.calibration.undistort_image(
images, intrinsics, lens_dist_coeff
).view(true_batch_size, self.temporal_dim, 3, self.image_height, self.image_width)
def get_parameters(self, true_batch_size=None):
"""
Get dict of relevant camera parameters and homography matrix
:return: The dictionary
"""
out_dict = {
"pan_degrees": torch.rad2deg(self.phi_dict["pan"]),
"tilt_degrees": torch.rad2deg(self.phi_dict["tilt"]),
"roll_degrees": torch.rad2deg(self.phi_dict["roll"]),
"position_meters": torch.stack([self.phi_dict[k] for k in ["c_x", "c_y", "c_z"]], dim=1)
.squeeze(-1)
.unsqueeze(-2)
.repeat(1, self.temporal_dim, 1),
"aov_radian": self.phi_dict["aov"],
"aov_degrees": torch.rad2deg(self.phi_dict["aov"]),
"x_focal_length": self.get_fl_from_aov_rad(self.phi_dict["aov"], d=self.image_width),
"y_focal_length": self.get_fl_from_aov_rad(self.phi_dict["aov"], d=self.image_width),
"principal_point": torch.tensor(
[[self.principal_point] * self.temporal_dim] * self.batch_dim
),
}
out_dict["homography"] = self.get_homography_raster().unsqueeze(1) # (B, 1, 3, 3)
# expected for SN evaluation
out_dict["radial_distortion"] = torch.zeros(self.batch_dim, self.temporal_dim, 6)
out_dict["tangential_distortion"] = torch.zeros(self.batch_dim, self.temporal_dim, 2)
out_dict["thin_prism_distortion"] = torch.zeros(self.batch_dim, self.temporal_dim, 4)
if self.psi is not None:
# in case only k1 and k2 are provided
out_dict["radial_distortion"][..., :2] = self.psi[..., :2]
if true_batch_size is None or true_batch_size == self.batch_dim:
return out_dict
for k in out_dict.keys():
out_dict[k] = out_dict[k][:true_batch_size]
return out_dict
@staticmethod
def static_undistort_points(points, cam):
intrinsics = cam.intrinsics_raster
lens_dist_coeff = cam.lens_dist_coeff
true_batch_size = points.shape[0]
if true_batch_size < cam.batch_dim:
intrinsics = intrinsics[:true_batch_size]
lens_dist_coeff = lens_dist_coeff[:true_batch_size]
# points in homogenous coordinates
# (B, T, 3, S, N) -> (T, 3, S*N) -> (T, S*N, 3)
batch_size, T, _, S, N = points.shape
points = points.view(batch_size, T, 3, S * N).transpose(2, 3)
points[..., :2] = kornia.geometry.undistort_points(
points[..., :2].view(batch_size * T, S * N, 2),
intrinsics,
dist=lens_dist_coeff,
num_iters=1,
).view(batch_size, T, S * N, 2)
# (T, S*N, 3) -> (T, 3, S*N) -> (B, T, 3, S, N)
points = points.transpose(2, 3).view(batch_size, T, 3, S, N)
return points
|