File size: 25,481 Bytes
bdb955e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
from typing import Tuple, Dict, Union

from pytorch_lightning import LightningModule
import torch
import kornia
import torch.nn as nn
from .utils.data_distr import FeatureScalerZScore


class CameraParameterWLensDistDictZScore(LightningModule):
    """Holds individual camera parameters including lens distortion parameters as nn.Modul"""

    def __init__(self, cam_distr, dist_distr, device="cpu"):
        super(CameraParameterWLensDistDictZScore, self).__init__()

        self.cam_distr = cam_distr
        self._device = device

        # phi raw
        self.param_dict = torch.nn.ParameterDict(
            {
                k: torch.nn.parameter.Parameter(
                    torch.zeros(
                        *cam_distr[k]["dimension"],
                        device=device,
                    ),
                    requires_grad=False
                    if ("no_grad" in cam_distr[k]) and (cam_distr[k]["no_grad"] == True)
                    else True,
                )
                for k in cam_distr.keys()
            }
        )

        # denormalization module to get phi_target
        self.feature_scaler = torch.nn.ModuleDict(
            {k: FeatureScalerZScore(*cam_distr[k]["mean_std"]) for k in cam_distr.keys()}
        )

        self.dist_distr = dist_distr
        if self.dist_distr is not None:
            self.param_dict_dist = torch.nn.ParameterDict(
                {
                    k: torch.nn.Parameter(torch.zeros(*dist_distr[k]["dimension"], device=device))
                    for k in dist_distr.keys()
                }
            )
            # TODO: modify later to dynamically cunstruct a tensor of shape (k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])
            #

            self.feature_scaler_dist_coeff = torch.nn.ModuleDict(
                {k: FeatureScalerZScore(*dist_distr[k]["mean_std"]) for k in dist_distr.keys()}
            )

    def initialize(
        self,
        update_dict_cam: Union[Dict[str, Union[float, torch.tensor]], None],
        update_dict_dist=None,
    ):
        """Initializes all camera parameters with zeros and replace specific values with provided values

        Args:
            update_dict_cam (Dict[str, Union[float, torch.tensor]]): Parameters to be updated
        """

        for k in self.param_dict.keys():
            self.param_dict[k].data = torch.zeros(
                *self.cam_distr[k]["dimension"], device=self._device
            )
        if self.dist_distr is not None:
            for k in self.dist_distr.keys():
                self.param_dict_dist[k].data = torch.zeros(
                    *self.dist_distr[k]["dimension"], device=self._device
                )

        if update_dict_cam is not None and len(update_dict_cam) > 0:
            for k, v in update_dict_cam.items():
                self.param_dict[k].data = (
                    torch.zeros(*self.cam_distr[k]["dimension"], device=self._device) + v
                )
        if update_dict_dist is not None:
            raise NotImplementedError

    def forward(self):
        phi_dict = {}
        for k, param in self.param_dict.items():
            phi_dict[k] = self.feature_scaler[k](param)

        if self.dist_distr is None:
            return phi_dict, None

        # This is a vector with 4, 5, 8, 12 or 14 elements with shape :math:`(*, n)` depending on the provided dict of coefficients
        # assumes dict is ordered according (k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])
        psi = torch.stack(
            [
                torch.clamp(
                    self.feature_scaler_dist_coeff[k](param),
                    min=self.dist_distr[k]["minmax"][0],
                    max=self.dist_distr[k]["minmax"][1],
                )
                for k, param in self.param_dict_dist.items()
            ],
            dim=-1,  # stack individual features and not arbirary leading dimensions
        )

        return phi_dict, psi


class SNProjectiveCamera:
    def __init__(
        self,
        phi_dict: Dict[str, torch.tensor],
        psi: torch.tensor,
        principal_point: Tuple[float, float],
        image_width: int,
        image_height: int,
        device: str = "cpu",
        nan_check=True,
    ) -> None:
        """Projective camera defined as K @ R [I|-t] with lens distortion module and batch dimensions B,T.

        Following Euler angles convention, we use a ZXZ succession of intrinsic rotations in order to describe
        the orientation of the camera. Starting from the world reference axis system, we first apply a rotation
        around the Z axis to pan the camera. Then the obtained axis system is rotated around its x axis in order to tilt the camera.
        Then the last rotation around the z axis of the new axis system alows to roll the camera. Note that this z axis is the principal axis of the camera.

        As T is not provided for camra location and lens distortion, these parameters are assumed to be fixed accross T.
        phi_dict is a dict of parameters containing:
        {
            'aov_x, torch.Size([B, T])',
            'pan, torch.Size([B, T])',
            'tilt, torch.Size([B, T])',
            'roll, torch.Size([B, T])',
            'c_x, torch.Size([B, 1])',
            'c_y, torch.Size([B, 1])',
            'c_z, torch.Size([B, 1])',
        }

        Internally fuses B and T dimension to pseudo batch dimension.
        {
            'aov_x, torch.Size([B*T])',
            'pan, torch.Size([B*T])',
            'tilt, torch.Size([B*T])'
            'roll, torch.Size([B*T])',
            'c_x, torch.Size([B])',
            'c_y, torch.Size([B])',
            'c_z, torch.Size([B])',
            }

        aov_x, pan, tilt, roll are assumed in radian.

        Note on lens distortion:
            Lens distortion coefficients are independent from image resolution!
            We I(dist_points(K_ndc, dist_coeff, points2d_ndc)) == I(dist_points(K_raster, dist_coeff, points2d_raster))

        Args:
            phi_dict (Dict[str, torch.tensor]): See example above
            psi (Union[None, torch.Tensor]): distortion coefficients as concatinated vector according to https://kornia.readthedocs.io/en/latest/geometry.calibration.html of shape (B, T, {2, 4, 5,8,12, 14})
            principal_point (Tuple[float, float]): Principal point assumed to be fixed across all samples (B,T,)
            image_width (int): assumed to be fixed across all samples (B,T,)
            image_height (int): assumed to be fixed across all samples (B,T,)
        """

        # fuse B and T dimension
        phi_dict_flat = {}
        for k, v in phi_dict.items():
            if len(v.shape) == 2:
                phi_dict_flat[k] = v.view(v.shape[0] * v.shape[1])
            elif len(v.shape) == 3:
                phi_dict_flat[k] = v.view(v.shape[0] * v.shape[1], v.shape[-1])

        self.batch_dim, self.temporal_dim = phi_dict["pan"].shape
        self.pseudo_batch_size = phi_dict_flat["pan"].shape[0]
        self.phi_dict_flat = phi_dict_flat

        self.principal_point = principal_point
        self.image_width = image_width
        self.image_height = image_height
        self.device = device

        self.psi = psi
        if self.psi is not None:
            if self.psi.shape[-1] != 2:
                raise NotImplementedError

            # :math:`(k_1,k_2,p_1,p_2[,k_3[,k_4,k_5,k_6[,s_1,s_2,s_3,s_4[,\tau_x,\tau_y]]]])`.
            # psi is a vector with 2, 4, 5, 8, 12 or 14 elements with shape :math:`(*, n)`.
            if self.psi.shape[-1] == 2:
                # assume zero tangential coefficients
                psi_ext = torch.zeros(*list(self.psi.shape[:-1]), 4)
                psi_ext[..., :2] = self.psi
                self.psi = psi_ext
            self.lens_dist_coeff = self.psi.view(self.pseudo_batch_size, self.psi.shape[-1]).to(
                self.device
            )

        self.intrinsics_ndc = self.construct_intrinsics_ndc()
        self.intrinsics_raster = self.construct_intrinsics_raster()

        self.rotation = self.rotation_from_euler_angles(
            *[phi_dict_flat[k] for k in ["pan", "tilt", "roll"]]
        )
        self.position = torch.stack([phi_dict_flat[k] for k in ["c_x", "c_y", "c_z"]], dim=-1)
        self.position = self.position.repeat_interleave(
            int(self.pseudo_batch_size / self.batch_dim), dim=0
        )  # (B, 3) # TODO: probably needs modification if B > 0?
        self.P_ndc = self.construct_projection_matrix(self.intrinsics_ndc)
        self.P_raster = self.construct_projection_matrix(self.intrinsics_raster)
        self.phi_dict = phi_dict

        self.nan_check = nan_check
        super().__init__()

    def construct_projection_matrix(self, intrinsics):
        It = torch.eye(4, device=self.device)[:-1].repeat(self.pseudo_batch_size, 1, 1)
        It[:, :, -1] = -self.position  # (B, 3, 4)
        self.It = It
        return intrinsics @ self.rotation @ It  #  # (B, 3, 4)

    def construct_intrinsics_ndc(self):
        # assume that the principal point is (0,0)
        K = torch.eye(3, requires_grad=False, device=self.device)
        K = K.reshape((1, 3, 3)).repeat(self.pseudo_batch_size, 1, 1)
        K[:, 0, 0] = self.get_fl_from_aov_rad(self.phi_dict_flat["aov"], d=2)
        K[:, 1, 1] = self.get_fl_from_aov_rad(
            self.phi_dict_flat["aov"], d=2 * self.image_width / self.image_height
        )
        return K

    def construct_intrinsics_raster(self):
        # assume that the principal point is (W/2,H/2)
        K = torch.eye(3, requires_grad=False, device=self.device)
        K = K.reshape((1, 3, 3)).repeat(self.pseudo_batch_size, 1, 1)
        K[:, 0, 0] = self.get_fl_from_aov_rad(self.phi_dict_flat["aov"], d=self.image_width)
        K[:, 1, 1] = self.get_fl_from_aov_rad(self.phi_dict_flat["aov"], d=self.image_width)
        K[:, 0, 2] = self.principal_point[0]
        K[:, 1, 2] = self.principal_point[1]
        return K

    def __str__(self) -> str:
        return f"aov_deg={torch.rad2deg(self.phi_dict['aov'])}, t={torch.stack([self.phi_dict[k] for k in ['c_x', 'c_y', 'c_z']], dim=-1)}, pan_deg={torch.rad2deg(self.phi_dict['pan'])} tilt_deg={torch.rad2deg(self.phi_dict['tilt'])} roll_deg={torch.rad2deg(self.phi_dict['roll'])}"

    def str_pan_tilt_roll_fl(self, b, t):
        r = f"FOV={torch.rad2deg(self.phi_dict['aov'][b, t]):.1f}°, pan={torch.rad2deg(self.phi_dict['pan'][b, t]):.1f}° tilt={torch.rad2deg(self.phi_dict['tilt'][b, t]):.1f}° roll={torch.rad2deg(self.phi_dict['roll'][b, t]):.1f}°"
        return r

    def str_lens_distortion_coeff(self, b):
        # TODO: T! also need indivudual lens_dist_coeff for each t in T
        # print(self.lens_dist_coeff.shape)
        return f"lens dist coeff=" + " ".join(
            [f"{x:.2f}" for x in self.lens_dist_coeff[b, :2]]
        )  # print only radial lens dist. coeff

    def __repr__(self) -> str:
        return f"{self.__class__}:" + self.__str__()

    def __len__(self):
        return self.pseudo_batch_size  # e.g. self.intrinsics.shape[0]

    def project_point2pixel(self, points3d: torch.tensor, lens_distortion: bool) -> torch.tensor:
        """Project world coordinates to pixel coordinates.

        Args:
            points3d (torch.tensor): of shape (N, 3) or (1, N, 3)

        Returns:
            torch.tensor: projected points of shape (B, T, N, 2)
        """
        position = self.position.view(self.pseudo_batch_size, 1, 3)
        point = points3d - position
        rotated_point = self.rotation @ point.transpose(1, 2)  # (pseudo_batch_size, 3, N)
        dist_point2cam = rotated_point[:, 2]  # (B, N) distance pixel to world point
        dist_point2cam = dist_point2cam.view(self.pseudo_batch_size, 1, rotated_point.shape[-1])
        rotated_point = rotated_point / dist_point2cam  # (B, 3, N) / (B, 1, N) -> (B, 3, N)

        projected_points = self.intrinsics_raster @ rotated_point  # (B, 3, N)
        # transpose vs view? here
        projected_points = projected_points.transpose(-1, -2)  # cannot use view()
        projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
        if lens_distortion:
            if self.psi is None:
                raise RuntimeError("Lens distortion requested, but deactivated in module")
            projected_points = self.distort_points(projected_points, self.intrinsics_raster)

        # reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
        projected_points = projected_points.view(
            self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
        )
        if self.nan_check:
            if torch.isnan(projected_points).any().item():
                print(self.phi_dict_flat)
                print(projected_points)
                raise RuntimeWarning("NaN in project_point2pixel")
        return projected_points

    def project_point2ndc(self, points3d: torch.tensor, lens_distortion: bool) -> torch.tensor:
        """Project world coordinates to pixel coordinates.

        Args:
            points3d (torch.tensor): of shape (N, 3) or (1, N, 3)

        Returns:
            torch.tensor: projected points of shape (B, T, N, 2)
        """
        position = self.position.view(self.pseudo_batch_size, 1, 3)
        point = points3d - position
        rotated_point = self.rotation @ point.transpose(1, 2)  # (pseudo_batch_size, 3, N)
        dist_point2cam = rotated_point[:, 2]  # (B, N) distance pixel to world point
        dist_point2cam = dist_point2cam.view(self.pseudo_batch_size, 1, rotated_point.shape[-1])
        rotated_point = rotated_point / dist_point2cam  # (B, 3, N) / (B, 1, N) -> (B, 3, N)

        projected_points = self.intrinsics_ndc @ rotated_point  # (B, 3, N)
        # transpose vs view? here
        projected_points = projected_points.transpose(-1, -2)  # cannot use view()
        projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
        if self.nan_check:
            if torch.isnan(projected_points).any().item():
                print(projected_points)
                print(self.phi_dict_flat)
                print("lens distortion", self.lens_dist_coeff)

                raise RuntimeWarning("NaN in project_point2ndc before distort")
        if lens_distortion:
            if self.psi is None:
                raise RuntimeError("Lens distortion requested, but deactivated in module")
            projected_points = self.distort_points(projected_points, self.intrinsics_ndc)

        # reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
        projected_points = projected_points.view(
            self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
        )
        if self.nan_check:
            if torch.isnan(projected_points).any().item():
                print(self.phi_dict_flat)
                print(projected_points)
                raise RuntimeWarning("NaN in project_point2ndc after distort")
        return projected_points

    def project_point2pixel_from_P(
        self, points3d: torch.tensor, lens_distortion: bool
    ) -> torch.tensor:
        """Project world coordinates to pixel coordinates from the projection matrix.

        Args:
            points3d (torch.tensor): of shape (1, N, 3)

        Returns:
            torch.tensor: projected points of shape (B, T, N, 2)
        """

        points3d = kornia.geometry.conversions.convert_points_to_homogeneous(points3d).transpose(
            1, 2
        )  # (B, 4, N)
        projected_points = torch.bmm(self.P_raster, points3d.repeat(self.pseudo_batch_size, 1, 1))
        normalize_by = projected_points[:, -1].view(
            self.pseudo_batch_size, 1, projected_points.shape[-1]
        )
        projected_points /= normalize_by
        projected_points = projected_points.transpose(-1, -2)  # cannot use view()
        projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
        if lens_distortion:
            if self.psi is None:
                raise RuntimeError("Lens distortion requested, but deactivated in module")
            projected_points = self.distort_points(projected_points, self.intrinsics_raster)
        # reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
        projected_points = projected_points.view(
            self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
        )
        return projected_points  # (B, T,  N, 2)

    def project_point2ndc_from_P(
        self, points3d: torch.tensor, lens_distortion: bool
    ) -> torch.tensor:
        """Project world coordinates to pixel coordinates from the projection matrix.

        Args:
            points3d (torch.tensor): of shape (1, N, 3)

        Returns:
            torch.tensor: projected points of shape (B, T, N, 2)
        """

        points3d = kornia.geometry.conversions.convert_points_to_homogeneous(points3d).transpose(
            1, 2
        )  # (B, 4, N)
        projected_points = torch.bmm(self.P_ndc, points3d.repeat(self.pseudo_batch_size, 1, 1))
        normalize_by = projected_points[:, -1].view(
            self.pseudo_batch_size, 1, projected_points.shape[-1]
        )
        projected_points /= normalize_by
        projected_points = projected_points.transpose(-1, -2)  # cannot use view()
        projected_points = kornia.geometry.convert_points_from_homogeneous(projected_points)
        if lens_distortion:
            if self.psi is None:
                raise RuntimeError("Lens distortion requested, but deactivated in module")
            projected_points = self.distort_points(projected_points, self.intrinsics_ndc)
        # reshape back from (pseudo_batch_size, N, 2) to (B, T, N, 2)
        projected_points = projected_points.view(
            self.batch_dim, self.temporal_dim, projected_points.shape[-2], 2
        )
        return projected_points  # (B, T,  N, 2)

    def rotation_from_euler_angles(self, pan, tilt, roll):
        # rotation matrices from a batch of pan tilt roll [rad] vectors of shape (?, )

        mask = (
            torch.eye(3, requires_grad=False, device=self.device)
            .reshape((1, 3, 3))
            .repeat(pan.shape[0], 1, 1)
        )
        mask[:, 0, 0] = -torch.sin(pan) * torch.sin(roll) * torch.cos(tilt) + torch.cos(
            pan
        ) * torch.cos(roll)
        mask[:, 0, 1] = torch.sin(pan) * torch.cos(roll) + torch.sin(roll) * torch.cos(
            pan
        ) * torch.cos(tilt)
        mask[:, 0, 2] = torch.sin(roll) * torch.sin(tilt)

        mask[:, 1, 0] = -torch.sin(pan) * torch.cos(roll) * torch.cos(tilt) - torch.sin(
            roll
        ) * torch.cos(pan)
        mask[:, 1, 1] = -torch.sin(pan) * torch.sin(roll) + torch.cos(pan) * torch.cos(
            roll
        ) * torch.cos(tilt)
        mask[:, 1, 2] = torch.sin(tilt) * torch.cos(roll)

        mask[:, 2, 0] = torch.sin(pan) * torch.sin(tilt)
        mask[:, 2, 1] = -torch.sin(tilt) * torch.cos(pan)
        mask[:, 2, 2] = torch.cos(tilt)

        return mask

    def get_homography_raster(self):
        return self.P_raster[:, :, [0, 1, 3]].inverse()

    def get_rays_world(self, x):
        """_summary_

        Args:
            x (_type_): x of shape (B, 3, N)

        Returns:
            LineCollection: _description_
        """
        raise NotImplementedError
        # TODO: verify
        # ray_cam_trans = torch.bmm(self.rotation.inverse(), torch.bmm(self.intrinsics.inverse(), x))
        # # unnormalized direction vector in euclidean points (x,y,z) based on camera origin (0,0,0)
        # ray_cam_trans = torch.nn.functional.normalize(ray_cam_trans, p=2, dim=1)  # (B, 3, N)

        # # shift support vector to origin in world space, i.e. the translation vector
        # support = self.position.unsqueeze(-1).repeat(
        #     ray_cam_trans.shape[0], 1, ray_cam_trans.shape[2]
        # )  # (B, 3, N)
        # return LineCollection(support=support, direction_norm=ray_cam_trans)

    @staticmethod
    def get_aov_rad(d: float, fl: torch.tensor):
        # https://en.wikipedia.org/wiki/Angle_of_view#Calculating_a_camera's_angle_of_view
        return 2 * torch.arctan(d / (2 * fl))  # in range [0.0, PI]

    @staticmethod
    def get_fl_from_aov_rad(aov_rad: torch.tensor, d: float):
        return 0.5 * d * (1 / torch.tan(0.5 * aov_rad))

    def undistort_points(self, points_pixel: torch.tensor, intrinsics, num_iters=5) -> torch.tensor:
        """Compensate for lens distortion a set of 2D image points.

        Wrapper for kornia.geometry.undistort_points()

        Args:
            points_pixel (torch.tensor): tensor of shape (B, N, 2)

        Returns:
            torch.tensor: undistorted points of shape (B, N, 2)
        """
        # print(points_pixel.shape, intrinsics.shape, self.lens_dist_coeff.shape)
        batch_dim, temporal_dim, N, _ = points_pixel.shape
        points_pixel = points_pixel.view(batch_dim * temporal_dim, N, 2)
        true_batch_size = batch_dim

        lens_dist_coeff = self.lens_dist_coeff
        if true_batch_size < self.batch_dim:
            intrinsics = intrinsics[:true_batch_size]
            lens_dist_coeff = lens_dist_coeff[:true_batch_size]

        return kornia.geometry.undistort_points(
            points_pixel, intrinsics, dist=lens_dist_coeff, num_iters=num_iters
        ).view(batch_dim, temporal_dim, N, 2)

    def distort_points(self, points_pixel: torch.tensor, intrinsics) -> torch.tensor:
        """Distortion of a set of 2D points based on the lens distortion model.

        Wrapper for kornia.geometry.distort_points()

        Args:
            points_pixel (torch.tensor): tensor of shape (B, N, 2)

        Returns:
            torch.tensor: distorted points of shape (B, N, 2)
        """
        return kornia.geometry.distort_points(points_pixel, intrinsics, dist=self.lens_dist_coeff)

    def undistort_images(self, images):
        # images of shape (B, T, C, H, W)
        true_batch_size, T = images.shape[:2]
        images = images.view(true_batch_size * T, 3, self.image_height, self.image_width).to(
            self.device
        )
        intrinsics = self.intrinsics_raster
        lens_dist_coeff = self.lens_dist_coeff
        if true_batch_size < self.batch_dim:
            intrinsics = intrinsics[:true_batch_size]
            lens_dist_coeff = lens_dist_coeff[:true_batch_size]

        return kornia.geometry.calibration.undistort_image(
            images, intrinsics, lens_dist_coeff
        ).view(true_batch_size, self.temporal_dim, 3, self.image_height, self.image_width)

    def get_parameters(self, true_batch_size=None):
        """
        Get dict of relevant camera parameters and homography matrix
        :return: The dictionary
        """
        out_dict = {
            "pan_degrees": torch.rad2deg(self.phi_dict["pan"]),
            "tilt_degrees": torch.rad2deg(self.phi_dict["tilt"]),
            "roll_degrees": torch.rad2deg(self.phi_dict["roll"]),
            "position_meters": torch.stack([self.phi_dict[k] for k in ["c_x", "c_y", "c_z"]], dim=1)
            .squeeze(-1)
            .unsqueeze(-2)
            .repeat(1, self.temporal_dim, 1),
            "aov_radian": self.phi_dict["aov"],
            "aov_degrees": torch.rad2deg(self.phi_dict["aov"]),
            "x_focal_length": self.get_fl_from_aov_rad(self.phi_dict["aov"], d=self.image_width),
            "y_focal_length": self.get_fl_from_aov_rad(self.phi_dict["aov"], d=self.image_width),
            "principal_point": torch.tensor(
                [[self.principal_point] * self.temporal_dim] * self.batch_dim
            ),
        }
        out_dict["homography"] = self.get_homography_raster().unsqueeze(1) # (B, 1, 3, 3)

        # expected for SN evaluation
        out_dict["radial_distortion"] = torch.zeros(self.batch_dim, self.temporal_dim, 6)
        out_dict["tangential_distortion"] = torch.zeros(self.batch_dim, self.temporal_dim, 2)
        out_dict["thin_prism_distortion"] = torch.zeros(self.batch_dim, self.temporal_dim, 4)

        if self.psi is not None:
            # in case only k1 and k2 are provided
            out_dict["radial_distortion"][..., :2] = self.psi[..., :2]

        if true_batch_size is None or true_batch_size == self.batch_dim:
            return out_dict

        for k in out_dict.keys():
            out_dict[k] = out_dict[k][:true_batch_size]

        return out_dict

    @staticmethod
    def static_undistort_points(points, cam):

        intrinsics = cam.intrinsics_raster
        lens_dist_coeff = cam.lens_dist_coeff

        true_batch_size = points.shape[0]
        if true_batch_size < cam.batch_dim:
            intrinsics = intrinsics[:true_batch_size]
            lens_dist_coeff = lens_dist_coeff[:true_batch_size]
        # points in homogenous coordinates
        # (B, T, 3, S, N) -> (T, 3, S*N) -> (T, S*N, 3)
        batch_size, T, _, S, N = points.shape
        points = points.view(batch_size, T, 3, S * N).transpose(2, 3)
        points[..., :2] = kornia.geometry.undistort_points(
            points[..., :2].view(batch_size * T, S * N, 2),
            intrinsics,
            dist=lens_dist_coeff,
            num_iters=1,
        ).view(batch_size, T, S * N, 2)

        # (T, S*N, 3) -> (T, 3, S*N) -> (B, T, 3, S, N)
        points = points.transpose(2, 3).view(batch_size, T, 3, S, N)
        return points