File size: 25,762 Bytes
2b49482 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 |
import argparse
import os
import random
from collections import defaultdict
import cv2
import re
import math
import numpy as np
from PIL import Image
import torch
import html
import gradio as gr
import torchvision.transforms as T
import torch.backends.cudnn as cudnn
from geochat.conversation import conv_templates, Chat
from geochat.model.builder import load_pretrained_model
from geochat.mm_utils import get_model_name_from_path
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
# parser = argparse.ArgumentParser()
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-base", type=str, default=None)
parser.add_argument("--gpu-id", type=str,default=0)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--conv-mode", type=str, default=None)
parser.add_argument("--max-new-tokens", type=int, default=300)
parser.add_argument("--load-8bit", action="store_true")
parser.add_argument("--load-4bit", action="store_true")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--image-aspect-ratio", type=str, default='pad')
# args = parser.parse_args()
args = parser.parse_args()
return args
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
cudnn.benchmark = False
cudnn.deterministic = True
print('Initializing Chat')
args = parse_args()
# cfg = Config(args)
model_name = get_model_name_from_path(args.model_path)
print(model_name)
tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device)
device = 'cuda:{}'.format(args.gpu_id)
# model_config = cfg.model_cfg
# model_config.device_8bit = args.gpu_id
# model_cls = registry.get_model_class(model_config.arch)
# model = model_cls.from_config(model_config).to(device)
bounding_box_size = 100
# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
model = model.eval()
CONV_VISION = conv_templates['llava_v1'].copy()
def bbox_and_angle_to_polygon(x1, y1, x2, y2, a):
# Calculate center coordinates
x_ctr = (x1 + x2) / 2
y_ctr = (y1 + y2) / 2
# Calculate width and height
w = abs(x2 - x1)
h = abs(y2 - y1)
# Calculate the angle in radians
angle_rad = math.radians(a)
# Calculate coordinates of the four corners of the rotated bounding box
cos_a = math.cos(angle_rad)
sin_a = math.sin(angle_rad)
x1_rot = cos_a * (-w / 2) - sin_a * (-h / 2) + x_ctr
y1_rot = sin_a * (-w / 2) + cos_a * (-h / 2) + y_ctr
x2_rot = cos_a * (w / 2) - sin_a * (-h / 2) + x_ctr
y2_rot = sin_a * (w / 2) + cos_a * (-h / 2) + y_ctr
x3_rot = cos_a * (w / 2) - sin_a * (h / 2) + x_ctr
y3_rot = sin_a * (w / 2) + cos_a * (h / 2) + y_ctr
x4_rot = cos_a * (-w / 2) - sin_a * (h / 2) + x_ctr
y4_rot = sin_a * (-w / 2) + cos_a * (h / 2) + y_ctr
# Return the polygon coordinates
polygon_coords = np.array((x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot))
return polygon_coords
def rotate_bbox(top_right, bottom_left, angle_degrees):
# Convert angle to radians
angle_radians = np.radians(angle_degrees)
# Calculate the center of the rectangle
center = ((top_right[0] + bottom_left[0]) / 2, (top_right[1] + bottom_left[1]) / 2)
# Calculate the width and height of the rectangle
width = top_right[0] - bottom_left[0]
height = top_right[1] - bottom_left[1]
# Create a rotation matrix
rotation_matrix = cv2.getRotationMatrix2D(center, angle_degrees, 1)
# Create an array of the rectangle corners
rectangle_points = np.array([[bottom_left[0], bottom_left[1]],
[top_right[0], bottom_left[1]],
[top_right[0], top_right[1]],
[bottom_left[0], top_right[1]]], dtype=np.float32)
# Rotate the rectangle points
rotated_rectangle = cv2.transform(np.array([rectangle_points]), rotation_matrix)[0]
return rotated_rectangle
def extract_substrings(string):
# first check if there is no-finished bracket
index = string.rfind('}')
if index != -1:
string = string[:index + 1]
pattern = r'<p>(.*?)\}(?!<)'
matches = re.findall(pattern, string)
substrings = [match for match in matches]
return substrings
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def computeIoU(bbox1, bbox2):
x1, y1, x2, y2 = bbox1
x3, y3, x4, y4 = bbox2
intersection_x1 = max(x1, x3)
intersection_y1 = max(y1, y3)
intersection_x2 = min(x2, x4)
intersection_y2 = min(y2, y4)
intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1)
bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1)
bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1)
union_area = bbox1_area + bbox2_area - intersection_area
iou = intersection_area / union_area
return iou
def save_tmp_img(visual_img):
file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg"
file_path = "/tmp/gradio" + file_name
visual_img.save(file_path)
return file_path
def mask2bbox(mask):
if mask is None:
return ''
mask = mask.resize([100, 100], resample=Image.NEAREST)
mask = np.array(mask)[:, :, 0]
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
if rows.sum():
# Get the top, bottom, left, and right boundaries
rmin, rmax = np.where(rows)[0][[0, -1]]
cmin, cmax = np.where(cols)[0][[0, -1]]
bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax)
else:
bbox = ''
return bbox
def escape_markdown(text):
# List of Markdown special characters that need to be escaped
md_chars = ['<', '>']
# Escape each special character
for char in md_chars:
text = text.replace(char, '\\' + char)
return text
def reverse_escape(text):
md_chars = ['\\<', '\\>']
for char in md_chars:
text = text.replace(char, char[1:])
return text
colors = [
(255, 0, 0),
(0, 255, 0),
(0, 0, 255),
(210, 210, 0),
(255, 0, 255),
(0, 255, 255),
(114, 128, 250),
(0, 165, 255),
(0, 128, 0),
(144, 238, 144),
(238, 238, 175),
(255, 191, 0),
(0, 128, 0),
(226, 43, 138),
(255, 0, 255),
(0, 215, 255),
]
color_map = {
f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for
color_id, color in enumerate(colors)
}
used_colors = colors
def visualize_all_bbox_together(image, generation):
if image is None:
return None, ''
generation = html.unescape(generation)
image_width, image_height = image.size
image = image.resize([500, int(500 / image_width * image_height)])
image_width, image_height = image.size
string_list = extract_substrings(generation)
if string_list: # it is grounding or detection
mode = 'all'
entities = defaultdict(list)
i = 0
j = 0
for string in string_list:
try:
obj, string = string.split('</p>')
except ValueError:
print('wrong string: ', string)
continue
if "}{" in string:
string=string.replace("}{","}<delim>{")
bbox_list = string.split('<delim>')
flag = False
for bbox_string in bbox_list:
integers = re.findall(r'-?\d+', bbox_string)
if len(integers)==4:
angle=0
else:
angle=integers[4]
integers=integers[:-1]
if len(integers) == 4:
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
left = x0 / bounding_box_size * image_width
bottom = y0 / bounding_box_size * image_height
right = x1 / bounding_box_size * image_width
top = y1 / bounding_box_size * image_height
entities[obj].append([left, bottom, right, top,angle])
j += 1
flag = True
if flag:
i += 1
else:
integers = re.findall(r'-?\d+', generation)
# if len(integers)==4:
angle=0
# else:
# angle=integers[4]
integers=integers[:-1]
if len(integers) == 4: # it is refer
mode = 'single'
entities = list()
x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3])
left = x0 / bounding_box_size * image_width
bottom = y0 / bounding_box_size * image_height
right = x1 / bounding_box_size * image_width
top = y1 / bounding_box_size * image_height
entities.append([left, bottom, right, top,angle])
else:
# don't detect any valid bbox to visualize
return None, ''
if len(entities) == 0:
return None, ''
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invalid image format, {type(image)} for {image}")
indices = list(range(len(entities)))
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 0.4
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 2
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 2
# num_bboxes = sum(len(x[-1]) for x in entities)
used_colors = colors # random.sample(colors, k=num_bboxes)
color_id = -1
for entity_idx, entity_name in enumerate(entities):
if mode == 'single' or mode == 'identify':
bboxes = entity_name
bboxes = [bboxes]
else:
bboxes = entities[entity_name]
color_id += 1
for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm,angle) in enumerate(bboxes):
skip_flag = False
orig_x1, orig_y1, orig_x2, orig_y2,angle = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm), int(angle)
color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist())
top_right=(orig_x1,orig_y1)
bottom_left=(orig_x2,orig_y2)
angle=angle
rotated_bbox = rotate_bbox(top_right, bottom_left, angle)
new_image=cv2.polylines(new_image, [rotated_bbox.astype(np.int32)], isClosed=True,thickness=2, color=color)
# new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
if mode == 'all':
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size,
text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (
text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \
prev_bbox['phrase'] == entity_name:
skip_flag = True
break
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
if not skip_flag:
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(
np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces),
cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
previous_bboxes.append(
{'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name})
if mode == 'all':
def color_iterator(colors):
while True:
for color in colors:
yield color
color_gen = color_iterator(colors)
# Add colors to phrases and remove <p></p>
def colored_phrases(match):
phrase = match.group(1)
color = next(color_gen)
return f'<span style="color:rgb{color}">{phrase}</span>'
generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|<delim>', '', generation)
generation_colored = re.sub(r'<p>(.*?)</p>', colored_phrases, generation)
else:
generation_colored = ''
pil_image = Image.fromarray(new_image)
return pil_image, generation_colored
def gradio_reset(chat_state, img_list):
if chat_state is not None:
chat_state.messages = []
if img_list is not None:
img_list = []
return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat',
interactive=True), chat_state, img_list
def image_upload_trigger(upload_flag, replace_flag, img_list):
# set the upload flag to true when receive a new image.
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
upload_flag = 1
if img_list:
replace_flag = 1
return upload_flag, replace_flag
def example_trigger(text_input, image, upload_flag, replace_flag, img_list):
# set the upload flag to true when receive a new image.
# if there is an old image (and old conversation), set the replace flag to true to reset the conv later.
upload_flag = 1
if img_list or replace_flag == 1:
replace_flag = 1
return upload_flag, replace_flag
def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag):
if len(user_message) == 0:
text_box_show = 'Input should not be empty!'
else:
text_box_show = ''
if isinstance(gr_img, dict):
gr_img, mask = gr_img['image'], gr_img['mask']
else:
mask = None
if '[identify]' in user_message:
# check if user provide bbox in the text input
integers = re.findall(r'-?\d+', user_message)
if len(integers) != 4: # no bbox in text
bbox = mask2bbox(mask)
user_message = user_message + bbox
if chat_state is None:
chat_state = CONV_VISION.copy()
if upload_flag:
if replace_flag:
chat_state = CONV_VISION.copy() # new image, reset everything
replace_flag = 0
chatbot = []
img_list = []
llm_message = chat.upload_img(gr_img, chat_state, img_list)
upload_flag = 0
chat.ask(user_message, chat_state)
chatbot = chatbot + [[user_message, None]]
if '[identify]' in user_message:
visual_img, _ = visualize_all_bbox_together(gr_img, user_message)
if visual_img is not None:
file_path = save_tmp_img(visual_img)
chatbot = chatbot + [[(file_path,), None]]
return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag
# def gradio_answer(chatbot, chat_state, img_list, temperature):
# llm_message = chat.answer(conv=chat_state,
# img_list=img_list,
# temperature=temperature,
# max_new_tokens=500,
# max_length=2000)[0]
# chatbot[-1][1] = llm_message
# return chatbot, chat_state
def gradio_stream_answer(chatbot, chat_state, img_list, temperature):
if len(img_list) > 0:
if not isinstance(img_list[0], torch.Tensor):
chat.encode_img(img_list)
streamer = chat.stream_answer(conv=chat_state,
img_list=img_list,
temperature=temperature,
max_new_tokens=500,
max_length=2000)
# chatbot[-1][1] = output
# chat_state.messages[-1][1] = '</s>'
output = ''
for new_output in streamer:
# print(new_output)
output=output+new_output
print(output)
# if "{" in output:
# chatbot[-1][1]="Grounding and referring expression is still under work."
# else:
output = escape_markdown(output)
# output += escapped
chatbot[-1][1] = output
yield chatbot, chat_state
chat_state.messages[-1][1] = '</s>'
return chatbot, chat_state
def gradio_visualize(chatbot, gr_img):
if isinstance(gr_img, dict):
gr_img, mask = gr_img['image'], gr_img['mask']
unescaped = reverse_escape(chatbot[-1][1])
visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped)
if visual_img is not None:
if len(generation_color):
chatbot[-1][1] = generation_color
file_path = save_tmp_img(visual_img)
chatbot = chatbot + [[None, (file_path,)]]
return chatbot
def gradio_taskselect(idx):
prompt_list = [
'',
'Classify the image in the following classes: ',
'[identify] what is this ',
]
instruct_list = [
'**Hint:** Type in whatever you want',
'**Hint:** Type in the classes you want the model to classify in',
'**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw',
]
return prompt_list[idx], instruct_list[idx]
chat = Chat(model, image_processor,tokenizer, device=device)
title = """<h1 align="center">GeoChat Demo</h1>"""
description = 'Welcome to Our GeoChat Chatbot Demo!'
article = """<div style="display: flex;"><p style="display: inline-block;"><a href='https://mbzuai-oryx.github.io/GeoChat'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p><p style="display: inline-block;"><a href='https://arxiv.org/abs/2311.15826'><img src='https://img.shields.io/badge/Paper-PDF-red'></a></p><p style="display: inline-block;"><a href='https://github.com/mbzuai-oryx/GeoChat/tree/main'><img src='https://img.shields.io/badge/GitHub-Repo-blue'></a></p><p style="display: inline-block;"><a href='https://youtu.be/KOKtkkKpNDk?feature=shared'><img src='https://img.shields.io/badge/YouTube-Video-red'></a></p></div>"""
# article = """<p><a href='https://minigpt-v2.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a></p>"""
introduction = '''
1. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time).
2. No Tag: Input whatever you want and CLICK **Send** without any tagging
You can also simply chat in free form!
'''
text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False,
scale=12)
with gr.Blocks() as demo:
gr.Markdown(title)
# gr.Markdown(description)
gr.Markdown(article)
with gr.Row():
with gr.Column(scale=0.5):
image = gr.Image(type="pil", tool='sketch', brush_radius=20)
temperature = gr.Slider(
minimum=0.1,
maximum=1.5,
value=0.6,
step=0.1,
interactive=True,
label="Temperature",
)
clear = gr.Button("Restart")
gr.Markdown(introduction)
with gr.Column():
chat_state = gr.State(value=None)
img_list = gr.State(value=[])
chatbot = gr.Chatbot(label='GeoChat')
dataset = gr.Dataset(
components=[gr.Textbox(visible=False)],
samples=[['No Tag'], ['Scene Classification'],['Identify']],
type="index",
label='Task Shortcuts',
)
task_inst = gr.Markdown('**Hint:** Upload your image and chat')
with gr.Row():
text_input.render()
send = gr.Button("Send", variant='primary', size='sm', scale=1)
upload_flag = gr.State(value=0)
replace_flag = gr.State(value=0)
image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag])
with gr.Row():
with gr.Column():
gr.Examples(examples=[
["demo_images/train_2956_0001.png", "Where are the airplanes located and what is their type?", upload_flag, replace_flag,
img_list],
["demo_images/7292.JPG", "How many buildings are flooded?", upload_flag,
replace_flag, img_list],
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
outputs=[upload_flag, replace_flag])
with gr.Column():
gr.Examples(examples=[
["demo_images/church_183.png", "Classify the image in the following classes: Church, Beach, Dense Residential, Storage Tanks.",
upload_flag, replace_flag, img_list],
["demo_images/04444.png", "[identify] what is this {<8><26><22><37>}", upload_flag,
replace_flag, img_list],
], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger,
outputs=[upload_flag, replace_flag])
dataset.click(
gradio_taskselect,
inputs=[dataset],
outputs=[text_input, task_inst],
show_progress="hidden",
postprocess=False,
queue=False,
)
text_input.submit(
gradio_ask,
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
).success(
gradio_stream_answer,
[chatbot, chat_state, img_list, temperature],
[chatbot, chat_state]
).success(
gradio_visualize,
[chatbot, image],
[chatbot],
queue=False,
)
send.click(
gradio_ask,
[text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag],
[text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False
).success(
gradio_stream_answer,
[chatbot, chat_state, img_list, temperature],
[chatbot, chat_state]
).success(
gradio_visualize,
[chatbot, image],
[chatbot],
queue=False,
)
clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False)
demo.launch(share=True, enable_queue=True,server_name='0.0.0.0')
|