Spaces:
Sleeping
Sleeping
Upload 12 files
Browse files- .env +3 -0
- .gitattributes +35 -35
- .huggingface.yml +2 -0
- Dockerfile +16 -0
- Procfile +1 -0
- README.md +11 -11
- app.py +300 -0
- finaliseddiabetes_model.zip +3 -0
- finalisedscaler.zip +3 -0
- model_loader.py +110 -0
- nodiabetes.zip +3 -0
- requirements.txt +46 -0
.env
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
DIABETES_MODEL_URL=https://drive.google.com/uc?export=download&id=14H_wPtW4_W1XPFiiJ3tkmsFFACac_jxS
|
2 |
+
SCALER_MODEL_URL=https://drive.google.com/uc?export=download&id=1PnILhtH35yVwG1xfd0bNj7jBquX855bk
|
3 |
+
NO_DIABETES_MODEL_URL=https://drive.google.com/uc?export=download&id=1cnjaKDyR7AiCojKsm0rZYtQZSCiJVWW6
|
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.huggingface.yml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
sdk: gradio
|
2 |
+
app_file: app.py
|
Dockerfile
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.10-slim
|
2 |
+
|
3 |
+
# Set working directory
|
4 |
+
WORKDIR /app
|
5 |
+
|
6 |
+
# Copy dependencies first
|
7 |
+
COPY requirements.txt .
|
8 |
+
|
9 |
+
# Install dependencies
|
10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
11 |
+
|
12 |
+
# Copy rest of the code
|
13 |
+
COPY . .
|
14 |
+
|
15 |
+
# Run the app
|
16 |
+
CMD ["python", "app.py"]
|
Procfile
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gunicorn -w 4 -k gthread app
|
README.md
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
-
---
|
2 |
-
title: Lolback
|
3 |
-
emoji: 🐨
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: purple
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
license: mit
|
9 |
-
---
|
10 |
-
|
11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Lolback
|
3 |
+
emoji: 🐨
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: mit
|
9 |
+
---
|
10 |
+
|
11 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import joblib
|
4 |
+
import logging
|
5 |
+
import zipfile
|
6 |
+
import pandas as pd
|
7 |
+
import numpy as np
|
8 |
+
import warnings
|
9 |
+
from flask import Flask, request, jsonify
|
10 |
+
from flask_cors import CORS
|
11 |
+
|
12 |
+
# Suppress sklearn warnings
|
13 |
+
warnings.filterwarnings('ignore', category=UserWarning, module='sklearn')
|
14 |
+
|
15 |
+
# Configure logging
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
17 |
+
|
18 |
+
# Get model URLs from environment variables
|
19 |
+
DIABETES_MODEL_URL = os.getenv("DIABETES_MODEL_URL")
|
20 |
+
SCALER_URL = os.getenv("SCALER_URL")
|
21 |
+
MULTI_MODEL_URL = os.getenv("MULTI_MODEL_URL")
|
22 |
+
|
23 |
+
# Local paths for downloaded models
|
24 |
+
MODEL_PATHS = {
|
25 |
+
"DIABETES_MODEL": "finaliseddiabetes_model.zip",
|
26 |
+
"SCALER": "finalisedscaler.zip",
|
27 |
+
"MULTI_MODEL": "nodiabetes.zip",
|
28 |
+
}
|
29 |
+
|
30 |
+
# Extracted model names
|
31 |
+
EXTRACTED_MODELS = {
|
32 |
+
"DIABETES_MODEL": "finaliseddiabetes_model.joblib",
|
33 |
+
"SCALER": "finalisedscaler.joblib",
|
34 |
+
"MULTI_MODEL": "nodiabetes.joblib",
|
35 |
+
}
|
36 |
+
|
37 |
+
BASE_DIR = os.getcwd()
|
38 |
+
|
39 |
+
# Flask app initialization
|
40 |
+
app = Flask(__name__)
|
41 |
+
|
42 |
+
# Enable CORS for all routes
|
43 |
+
CORS(app, resources={
|
44 |
+
r"/*": {
|
45 |
+
"origins": [
|
46 |
+
"http://localhost:3000",
|
47 |
+
"https://carelog-diabetes-api.onrender.com",
|
48 |
+
"https://carelog-diabetes.vercel.app",
|
49 |
+
"http://localhost:5000"
|
50 |
+
],
|
51 |
+
"methods": ["GET", "POST", "OPTIONS"],
|
52 |
+
"allow_headers": ["Content-Type", "Authorization"],
|
53 |
+
"supports_credentials": True
|
54 |
+
}
|
55 |
+
})
|
56 |
+
|
57 |
+
def download_model(url, zip_filename):
|
58 |
+
"""Downloads the model zip file from the given URL and saves it locally."""
|
59 |
+
zip_path = os.path.join(BASE_DIR, zip_filename)
|
60 |
+
if not url:
|
61 |
+
logging.error(f"URL for {zip_filename} is missing!")
|
62 |
+
return False
|
63 |
+
try:
|
64 |
+
response = requests.get(url, allow_redirects=True)
|
65 |
+
if response.status_code == 200:
|
66 |
+
with open(zip_path, 'wb') as f:
|
67 |
+
f.write(response.content)
|
68 |
+
logging.info(f"Downloaded {zip_filename} successfully.")
|
69 |
+
return True
|
70 |
+
else:
|
71 |
+
logging.error(f"Failed to download {zip_filename}. HTTP Status: {response.status_code}")
|
72 |
+
return False
|
73 |
+
except Exception as e:
|
74 |
+
logging.error(f"Error downloading {zip_filename}: {e}")
|
75 |
+
return False
|
76 |
+
|
77 |
+
def extract_if_needed(zip_filename, extracted_filename):
|
78 |
+
"""Extracts model file from zip if not already extracted."""
|
79 |
+
zip_path = os.path.join(BASE_DIR, zip_filename)
|
80 |
+
extracted_path = os.path.join(BASE_DIR, extracted_filename)
|
81 |
+
if os.path.exists(extracted_path):
|
82 |
+
logging.info(f"{extracted_filename} already exists. Skipping extraction.")
|
83 |
+
return True
|
84 |
+
if not os.path.exists(zip_path):
|
85 |
+
logging.error(f"Zip file missing: {zip_path}")
|
86 |
+
return False
|
87 |
+
try:
|
88 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
89 |
+
zip_ref.extractall(BASE_DIR)
|
90 |
+
logging.info(f"Extracted {zip_filename}")
|
91 |
+
return True
|
92 |
+
except Exception as e:
|
93 |
+
logging.error(f"Error extracting {zip_filename}: {e}")
|
94 |
+
return False
|
95 |
+
|
96 |
+
def load_model(model_filename):
|
97 |
+
"""Loads a model from the given filename."""
|
98 |
+
model_path = os.path.join(BASE_DIR, model_filename)
|
99 |
+
if not os.path.exists(model_path):
|
100 |
+
logging.error(f"Model file not found: {model_path}")
|
101 |
+
return None
|
102 |
+
try:
|
103 |
+
model = joblib.load(model_path)
|
104 |
+
logging.info(f"Loaded {model_filename} successfully.")
|
105 |
+
return model
|
106 |
+
except Exception as e:
|
107 |
+
logging.error(f"Error loading {model_filename}: {e}")
|
108 |
+
return None
|
109 |
+
|
110 |
+
def initialize_models():
|
111 |
+
"""Handles downloading, extraction, and loading of models."""
|
112 |
+
models = {}
|
113 |
+
for model_key, zip_filename in MODEL_PATHS.items():
|
114 |
+
extracted_filename = EXTRACTED_MODELS[model_key]
|
115 |
+
if not os.path.exists(os.path.join(BASE_DIR, zip_filename)):
|
116 |
+
download_model(globals()[f"{model_key}_URL"], zip_filename)
|
117 |
+
extract_if_needed(zip_filename, extracted_filename)
|
118 |
+
models[model_key] = load_model(extracted_filename)
|
119 |
+
return models
|
120 |
+
|
121 |
+
models = initialize_models()
|
122 |
+
|
123 |
+
FEATURE_ORDER = [
|
124 |
+
'Pregnancies', 'Glucose', 'BloodPressure', 'Insulin',
|
125 |
+
'BMI', 'DiabetesPedigreeFunction', 'Age'
|
126 |
+
]
|
127 |
+
|
128 |
+
def validate_input(value, input_type=float, min_value=0, max_value=None):
|
129 |
+
"""Enhanced input validation with range checking."""
|
130 |
+
try:
|
131 |
+
value = input_type(value)
|
132 |
+
if value < min_value:
|
133 |
+
return None
|
134 |
+
if max_value is not None and value > max_value:
|
135 |
+
return None
|
136 |
+
return value
|
137 |
+
except (ValueError, TypeError):
|
138 |
+
return None
|
139 |
+
|
140 |
+
def validate_blood_pressure(systolic, diastolic):
|
141 |
+
"""Validates blood pressure values within realistic ranges."""
|
142 |
+
systolic = validate_input(systolic, float, 0, 300)
|
143 |
+
diastolic = validate_input(diastolic, float, 0, 200)
|
144 |
+
|
145 |
+
if systolic is None or diastolic is None:
|
146 |
+
return None, None
|
147 |
+
return systolic, diastolic
|
148 |
+
|
149 |
+
def validate_gender(gender):
|
150 |
+
"""Validates gender input."""
|
151 |
+
if isinstance(gender, str) and gender.lower() in ['male', 'female']:
|
152 |
+
return 1 if gender.lower() == 'male' else 0
|
153 |
+
return None
|
154 |
+
|
155 |
+
def calculate_diabetes_pedigree(family_history, first_degree=0, second_degree=0):
|
156 |
+
"""Calculates diabetes pedigree function based on family history."""
|
157 |
+
if not family_history:
|
158 |
+
return 0.0
|
159 |
+
genetic_contribution = (first_degree * 0.5) + (second_degree * 0.25)
|
160 |
+
return min(genetic_contribution, 1.0)
|
161 |
+
|
162 |
+
def get_multi_condition_predictions(model, df):
|
163 |
+
"""Get predictions for multiple health conditions."""
|
164 |
+
try:
|
165 |
+
predictions = model.predict(df)[0]
|
166 |
+
probs_list = model.predict_proba(df)
|
167 |
+
|
168 |
+
return {
|
169 |
+
'hypertension': bool(predictions[0]),
|
170 |
+
'cardiovascular': float(probs_list[1][0][1]),
|
171 |
+
'stroke': float(probs_list[2][0][1]),
|
172 |
+
'diabetes': float(probs_list[3][0][1])
|
173 |
+
}
|
174 |
+
except Exception as e:
|
175 |
+
logging.error(f"Error in multi-condition prediction: {str(e)}")
|
176 |
+
return None
|
177 |
+
|
178 |
+
def get_diabetes_prediction(model, df):
|
179 |
+
"""Get diabetes-only prediction."""
|
180 |
+
try:
|
181 |
+
prediction = model.predict(df)[0]
|
182 |
+
probability = float(model.predict_proba(df)[0][1] * 100)
|
183 |
+
return 'Diabetes' if prediction else 'No Diabetes', probability
|
184 |
+
except Exception as e:
|
185 |
+
logging.error(f"Error in diabetes prediction: {str(e)}")
|
186 |
+
return None, 0.0
|
187 |
+
|
188 |
+
@app.route('/health', methods=['GET'])
|
189 |
+
def health_check():
|
190 |
+
"""Health check endpoint."""
|
191 |
+
return jsonify({
|
192 |
+
'status': 'healthy',
|
193 |
+
'message': 'Service is running'
|
194 |
+
})
|
195 |
+
|
196 |
+
@app.route('/predict', methods=['POST'])
|
197 |
+
def predict_health():
|
198 |
+
"""Main prediction endpoint."""
|
199 |
+
try:
|
200 |
+
data = request.get_json()
|
201 |
+
logging.info(f"Received data: {data}")
|
202 |
+
if not data:
|
203 |
+
return jsonify({'status': 'error', 'error': 'Invalid JSON payload'}), 400
|
204 |
+
|
205 |
+
# Validate basic health metrics
|
206 |
+
gender = validate_gender(data.get('gender'))
|
207 |
+
if gender is None:
|
208 |
+
return jsonify({'status': 'error', 'error': 'Invalid gender value. Must be "male" or "female"'}), 400
|
209 |
+
|
210 |
+
systolic, diastolic = validate_blood_pressure(data.get('systolic'), data.get('diastolic'))
|
211 |
+
if systolic is None or diastolic is None:
|
212 |
+
return jsonify({'status': 'error', 'error': 'Invalid blood pressure values'}), 400
|
213 |
+
|
214 |
+
# Validate other common inputs
|
215 |
+
age = validate_input(data.get('age'), float, 0, 120)
|
216 |
+
glucose = validate_input(data.get('glucose'), float, 0, 1000)
|
217 |
+
bmi = validate_input(data.get('bmi'), float, 0, 100)
|
218 |
+
|
219 |
+
if any(v is None for v in [age, glucose, bmi]):
|
220 |
+
return jsonify({'status': 'error', 'error': 'Invalid values for age, glucose, or BMI'}), 400
|
221 |
+
|
222 |
+
# Determine which model to use based on blood pressure
|
223 |
+
use_multi_condition = systolic < 90 or diastolic < 60
|
224 |
+
|
225 |
+
if use_multi_condition:
|
226 |
+
# Multi-condition model input preparation
|
227 |
+
df_multi = pd.DataFrame([{
|
228 |
+
'Age': age,
|
229 |
+
'Gender': gender,
|
230 |
+
'Systolic_bp': systolic,
|
231 |
+
'Diastolic_bp': diastolic,
|
232 |
+
'Glucose': glucose,
|
233 |
+
'BMI': bmi
|
234 |
+
}])
|
235 |
+
|
236 |
+
results = get_multi_condition_predictions(models['MULTI_MODEL'], df_multi)
|
237 |
+
if results is None:
|
238 |
+
return jsonify({'status': 'error', 'error': 'Error in multi-condition prediction'}), 500
|
239 |
+
|
240 |
+
return jsonify({
|
241 |
+
'status': 'success',
|
242 |
+
'model': 'multi-condition',
|
243 |
+
'predictions': {
|
244 |
+
'hypertension': results['hypertension'],
|
245 |
+
'cardiovascular_risk': results['cardiovascular'],
|
246 |
+
'stroke_risk': results['stroke'],
|
247 |
+
'diabetes_risk': results['diabetes']
|
248 |
+
}
|
249 |
+
})
|
250 |
+
else:
|
251 |
+
# Diabetes-specific model handling
|
252 |
+
pregnancies = validate_input(data.get('pregnancies', 0 if gender == 1 else None), float, 0, 20)
|
253 |
+
insulin = validate_input(data.get('insulin'), float, 0, 1000)
|
254 |
+
|
255 |
+
# Family history handling
|
256 |
+
family_history = data.get('family_history', False)
|
257 |
+
first_degree = validate_input(data.get('first_degree_relatives', 0), float, 0, 10)
|
258 |
+
second_degree = validate_input(data.get('second_degree_relatives', 0), float, 0, 20)
|
259 |
+
|
260 |
+
diabetes_pedigree = calculate_diabetes_pedigree(
|
261 |
+
family_history,
|
262 |
+
first_degree if first_degree is not None else 0,
|
263 |
+
second_degree if second_degree is not None else 0
|
264 |
+
)
|
265 |
+
|
266 |
+
if any(v is None for v in [pregnancies, insulin]):
|
267 |
+
return jsonify({'status': 'error', 'error': 'Invalid values for pregnancies or insulin'}), 400
|
268 |
+
|
269 |
+
df_diabetes = pd.DataFrame([{
|
270 |
+
'Pregnancies': pregnancies,
|
271 |
+
'Glucose': glucose,
|
272 |
+
'BloodPressure': systolic,
|
273 |
+
'Insulin': insulin,
|
274 |
+
'BMI': bmi,
|
275 |
+
'DiabetesPedigreeFunction': diabetes_pedigree,
|
276 |
+
'Age': age
|
277 |
+
}])
|
278 |
+
|
279 |
+
# Ensure correct column order
|
280 |
+
df_diabetes = df_diabetes[FEATURE_ORDER]
|
281 |
+
|
282 |
+
# Scale the data
|
283 |
+
df_scaled = models['SCALER'].transform(df_diabetes)
|
284 |
+
|
285 |
+
prediction, probability = get_diabetes_prediction(models['DIABETES_MODEL'], df_scaled)
|
286 |
+
|
287 |
+
return jsonify({
|
288 |
+
'status': 'success',
|
289 |
+
'model': 'diabetes',
|
290 |
+
'prediction': prediction,
|
291 |
+
'probability': probability,
|
292 |
+
'risk_level': 'HIGH' if probability > 70 else 'MODERATE' if probability > 40 else 'LOW'
|
293 |
+
})
|
294 |
+
|
295 |
+
except Exception as e:
|
296 |
+
logging.error(f"Error: {e}")
|
297 |
+
return jsonify({'status': 'error', 'error': str(e)}), 500
|
298 |
+
|
299 |
+
if __name__ == '__main__':
|
300 |
+
app.run(host="0.0.0.0", port=7860)
|
finaliseddiabetes_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c17cf84b9c5d2fd57663e1a6344e54aee9a4e513bb80954a3c4ab144d3c0355
|
3 |
+
size 283301
|
finalisedscaler.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f26ac692e451befa24ad6e53aa65c95f447e41e6bd5e30aa18fc722989e1ee68
|
3 |
+
size 1065
|
model_loader.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import requests
|
3 |
+
import joblib
|
4 |
+
import logging
|
5 |
+
import zipfile
|
6 |
+
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
|
10 |
+
# Get model URLs from environment variables
|
11 |
+
DIABETES_MODEL_URL = os.getenv("DIABETES_MODEL_URL")
|
12 |
+
SCALER_URL = os.getenv("SCALER_URL")
|
13 |
+
MULTI_MODEL_URL = os.getenv("MULTI_MODEL_URL")
|
14 |
+
|
15 |
+
# Local paths for downloaded models
|
16 |
+
MODEL_PATHS = {
|
17 |
+
"DIABETES_MODEL": "finaliseddiabetes_model.zip",
|
18 |
+
"SCALER": "finalisedscaler.zip",
|
19 |
+
"MULTI_MODEL": "nodiabetes.zip",
|
20 |
+
}
|
21 |
+
|
22 |
+
# Extracted model names
|
23 |
+
EXTRACTED_MODELS = {
|
24 |
+
"DIABETES_MODEL": "finaliseddiabetes_model.joblib",
|
25 |
+
"SCALER": "finalisedscaler.joblib",
|
26 |
+
"MULTI_MODEL": "nodiabetes.joblib",
|
27 |
+
}
|
28 |
+
|
29 |
+
BASE_DIR = os.getcwd() # Get current working directory
|
30 |
+
|
31 |
+
def download_model(url, zip_filename):
|
32 |
+
"""Downloads the model zip file from the given URL and saves it locally."""
|
33 |
+
zip_path = os.path.join(BASE_DIR, zip_filename)
|
34 |
+
if not url:
|
35 |
+
logging.error(f"URL for {zip_filename} is missing!")
|
36 |
+
return False
|
37 |
+
|
38 |
+
try:
|
39 |
+
response = requests.get(url, allow_redirects=True)
|
40 |
+
if response.status_code == 200:
|
41 |
+
with open(zip_path, 'wb') as f:
|
42 |
+
f.write(response.content)
|
43 |
+
logging.info(f"Downloaded {zip_filename} successfully.")
|
44 |
+
return True
|
45 |
+
else:
|
46 |
+
logging.error(f"Failed to download {zip_filename}. HTTP Status: {response.status_code}")
|
47 |
+
return False
|
48 |
+
except Exception as e:
|
49 |
+
logging.error(f"Error downloading {zip_filename}: {e}")
|
50 |
+
return False
|
51 |
+
|
52 |
+
def extract_if_needed(zip_filename, extracted_filename):
|
53 |
+
"""Extracts model file from zip if not already extracted."""
|
54 |
+
zip_path = os.path.join(BASE_DIR, zip_filename)
|
55 |
+
extracted_path = os.path.join(BASE_DIR, extracted_filename)
|
56 |
+
|
57 |
+
if os.path.exists(extracted_path):
|
58 |
+
logging.info(f"{extracted_filename} already exists. Skipping extraction.")
|
59 |
+
return True
|
60 |
+
|
61 |
+
if not os.path.exists(zip_path):
|
62 |
+
logging.error(f"Zip file missing: {zip_path}")
|
63 |
+
return False
|
64 |
+
|
65 |
+
try:
|
66 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
67 |
+
zip_ref.extractall(BASE_DIR)
|
68 |
+
extracted_files = zip_ref.namelist()
|
69 |
+
logging.info(f"Extracted {zip_filename}, contents: {extracted_files}")
|
70 |
+
return True
|
71 |
+
except Exception as e:
|
72 |
+
logging.error(f"Error extracting {zip_filename}: {e}")
|
73 |
+
return False
|
74 |
+
|
75 |
+
def load_model(model_filename):
|
76 |
+
"""Loads a model from the given filename."""
|
77 |
+
model_path = os.path.join(BASE_DIR, model_filename)
|
78 |
+
if not os.path.exists(model_path):
|
79 |
+
logging.error(f"Model file not found: {model_path}")
|
80 |
+
return None
|
81 |
+
|
82 |
+
try:
|
83 |
+
model = joblib.load(model_path)
|
84 |
+
logging.info(f"Loaded {model_filename} successfully.")
|
85 |
+
return model
|
86 |
+
except Exception as e:
|
87 |
+
logging.error(f"Error loading {model_filename}: {e}")
|
88 |
+
return None
|
89 |
+
|
90 |
+
# **Main Execution**
|
91 |
+
for model_key, zip_filename in MODEL_PATHS.items():
|
92 |
+
extracted_filename = EXTRACTED_MODELS[model_key]
|
93 |
+
|
94 |
+
# Step 1: Download model if not present
|
95 |
+
if not os.path.exists(os.path.join(BASE_DIR, zip_filename)):
|
96 |
+
download_model(globals()[f"{model_key}_URL"], zip_filename)
|
97 |
+
|
98 |
+
# Step 2: Extract model file
|
99 |
+
extract_if_needed(zip_filename, extracted_filename)
|
100 |
+
|
101 |
+
# Step 3: Load models
|
102 |
+
diabetes_model = load_model(EXTRACTED_MODELS["DIABETES_MODEL"])
|
103 |
+
scaler = load_model(EXTRACTED_MODELS["SCALER"])
|
104 |
+
multi_model = load_model(EXTRACTED_MODELS["MULTI_MODEL"])
|
105 |
+
|
106 |
+
# Final check
|
107 |
+
if diabetes_model and scaler and multi_model:
|
108 |
+
logging.info("All models loaded successfully! ✅")
|
109 |
+
else:
|
110 |
+
logging.error("Some models failed to load. ❌ Check logs for details.")
|
nodiabetes.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05ae3b2c7b5d0bb6172bf0513d5cd187bfd289b457034d0f368a9bd039d2b044
|
3 |
+
size 6388514
|
requirements.txt
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Web Framework and WSGI
|
2 |
+
Flask==3.0.3
|
3 |
+
Flask-Cors==4.0.1
|
4 |
+
gunicorn==21.2.0
|
5 |
+
Werkzeug==3.0.1
|
6 |
+
|
7 |
+
# Machine Learning and Data Processing
|
8 |
+
scikit-learn==1.3.0
|
9 |
+
pandas==2.2.2
|
10 |
+
numpy==1.26.4
|
11 |
+
joblib==1.4.2
|
12 |
+
waitress==3.0.2
|
13 |
+
# Error Handling and Validation
|
14 |
+
marshmallow==3.20.2 # For request/response validation
|
15 |
+
pydantic==2.6.1 # For data validation
|
16 |
+
|
17 |
+
# Security
|
18 |
+
python-dotenv==1.0.0
|
19 |
+
PyJWT==2.8.0 # For JWT handling if you add authentication
|
20 |
+
bcrypt==4.1.2 # For password hashing if needed
|
21 |
+
|
22 |
+
# Monitoring and Logging
|
23 |
+
prometheus-flask-exporter==0.23.0 # For metrics and monitoring
|
24 |
+
python-json-logger==2.0.7 # For structured JSON logging
|
25 |
+
sentry-sdk[flask]==1.40.4 # For error tracking
|
26 |
+
|
27 |
+
# HTTP and Networking
|
28 |
+
requests==2.32.3
|
29 |
+
urllib3==2.2.0 # Required by requests
|
30 |
+
certifi==2024.2.2 # For SSL certificate verification
|
31 |
+
|
32 |
+
# Performance and Caching
|
33 |
+
cachetools==5.3.2 # For in-memory caching
|
34 |
+
redis==5.0.1 # For distributed caching if needed
|
35 |
+
|
36 |
+
# Development and Testing
|
37 |
+
pytest==8.0.0 # For unit testing
|
38 |
+
pytest-cov==4.1.0 # For test coverage
|
39 |
+
black==24.1.1 # For code formatting
|
40 |
+
flake8==7.0.0 # For code linting
|
41 |
+
|
42 |
+
# Time zone handling
|
43 |
+
pytz==2024.1 # For proper timezone handling
|
44 |
+
|
45 |
+
# Compression and Performance
|
46 |
+
brotli==1.1.0 # For response compression
|