import streamlit as st import numpy as np import torch from transformers import DistilBertTokenizer, DistilBertForQuestionAnswering st.set_page_config(page_title="Question Answering Tool", page_icon=":mag_right:") @st.cache_resource def load_model(): model = DistilBertForQuestionAnswering.from_pretrained("distilbert-base-uncased-distilled-squad") tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-distilled-squad") return model, tokenizer def get_answer(question, text, tokenizer, model): if "your name" in question.lower(): return "My name is Numini, full form NativUttarMini, created by Sanju Debnath at University of Calcutta." inputs = tokenizer(question, text, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) start = torch.argmax(outputs.start_logits) end = torch.argmax(outputs.end_logits) + 1 ans_tokens = inputs.input_ids[0][start:end] answer = tokenizer.decode(ans_tokens, skip_special_tokens=True) return answer def main(): st.write("# Question Answering Tool \n" "This tool will help you find answers to your questions about the text you provide. \n" "Please enter your question and the text you want to search in the boxes below.") model, tokenizer = load_model() with st.form("qa_form"): text = st.text_area("Enter your text here") question = st.text_input("Enter your question here") if st.form_submit_button("Submit"): data_load_state = st.text('Let me think about that...') answer = get_answer(question, text, tokenizer, model) if answer.strip() == "": data_load_state.text("Sorry but I don't know the answer to that question") else: data_load_state.text(answer) main()