File size: 10,479 Bytes
e8f2571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) OpenMMLab. All rights reserved.
# Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend  # noqa
from typing import List, Tuple

import torch
import torch.nn.functional as F
from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList
from ..task_modules.samplers import SamplingResult
from ..utils import empty_instances
from .standard_roi_head import StandardRoIHead


@MODELS.register_module()
class PointRendRoIHead(StandardRoIHead):
    """`PointRend <https://arxiv.org/abs/1912.08193>`_."""

    def __init__(self, point_head: ConfigType, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        assert self.with_bbox and self.with_mask
        self.init_point_head(point_head)

    def init_point_head(self, point_head: ConfigType) -> None:
        """Initialize ``point_head``"""
        self.point_head = MODELS.build(point_head)

    def mask_loss(self, x: Tuple[Tensor],
                  sampling_results: List[SamplingResult], bbox_feats: Tensor,
                  batch_gt_instances: InstanceList) -> dict:
        """Run forward function and calculate loss for mask head and point head
        in training."""
        mask_results = super().mask_loss(
            x=x,
            sampling_results=sampling_results,
            bbox_feats=bbox_feats,
            batch_gt_instances=batch_gt_instances)

        mask_point_results = self._mask_point_loss(
            x=x,
            sampling_results=sampling_results,
            mask_preds=mask_results['mask_preds'],
            batch_gt_instances=batch_gt_instances)
        mask_results['loss_mask'].update(
            loss_point=mask_point_results['loss_point'])

        return mask_results

    def _mask_point_loss(self, x: Tuple[Tensor],
                         sampling_results: List[SamplingResult],
                         mask_preds: Tensor,
                         batch_gt_instances: InstanceList) -> dict:
        """Run forward function and calculate loss for point head in
        training."""
        pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
        rel_roi_points = self.point_head.get_roi_rel_points_train(
            mask_preds, pos_labels, cfg=self.train_cfg)
        rois = bbox2roi([res.pos_bboxes for res in sampling_results])

        fine_grained_point_feats = self._get_fine_grained_point_feats(
            x, rois, rel_roi_points)
        coarse_point_feats = point_sample(mask_preds, rel_roi_points)
        mask_point_pred = self.point_head(fine_grained_point_feats,
                                          coarse_point_feats)

        loss_and_target = self.point_head.loss_and_target(
            point_pred=mask_point_pred,
            rel_roi_points=rel_roi_points,
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            cfg=self.train_cfg)

        return loss_and_target

    def _mask_point_forward_test(self, x: Tuple[Tensor], rois: Tensor,
                                 label_preds: Tensor,
                                 mask_preds: Tensor) -> Tensor:
        """Mask refining process with point head in testing.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            label_preds (Tensor): The predication class for each rois.
            mask_preds (Tensor): The predication coarse masks of
                shape (num_rois, num_classes, small_size, small_size).

        Returns:
            Tensor: The refined masks of shape (num_rois, num_classes,
            large_size, large_size).
        """
        refined_mask_pred = mask_preds.clone()
        for subdivision_step in range(self.test_cfg.subdivision_steps):
            refined_mask_pred = F.interpolate(
                refined_mask_pred,
                scale_factor=self.test_cfg.scale_factor,
                mode='bilinear',
                align_corners=False)
            # If `subdivision_num_points` is larger or equal to the
            # resolution of the next step, then we can skip this step
            num_rois, channels, mask_height, mask_width = \
                refined_mask_pred.shape
            if (self.test_cfg.subdivision_num_points >=
                    self.test_cfg.scale_factor**2 * mask_height * mask_width
                    and
                    subdivision_step < self.test_cfg.subdivision_steps - 1):
                continue
            point_indices, rel_roi_points = \
                self.point_head.get_roi_rel_points_test(
                    refined_mask_pred, label_preds, cfg=self.test_cfg)

            fine_grained_point_feats = self._get_fine_grained_point_feats(
                x=x, rois=rois, rel_roi_points=rel_roi_points)
            coarse_point_feats = point_sample(mask_preds, rel_roi_points)
            mask_point_pred = self.point_head(fine_grained_point_feats,
                                              coarse_point_feats)

            point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
            refined_mask_pred = refined_mask_pred.reshape(
                num_rois, channels, mask_height * mask_width)
            refined_mask_pred = refined_mask_pred.scatter_(
                2, point_indices, mask_point_pred)
            refined_mask_pred = refined_mask_pred.view(num_rois, channels,
                                                       mask_height, mask_width)

        return refined_mask_pred

    def _get_fine_grained_point_feats(self, x: Tuple[Tensor], rois: Tensor,
                                      rel_roi_points: Tensor) -> Tensor:
        """Sample fine grained feats from each level feature map and
        concatenate them together.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            rois (Tensor): shape (num_rois, 5).
            rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
                2) that contains [0, 1] x [0, 1] normalized coordinates of the
                most uncertain points from the [mask_height, mask_width] grid.

        Returns:
            Tensor: The fine grained features for each points,
            has shape (num_rois, feats_channels, num_points).
        """
        assert rois.shape[0] > 0, 'RoI is a empty tensor.'
        num_imgs = x[0].shape[0]
        fine_grained_feats = []
        for idx in range(self.mask_roi_extractor.num_inputs):
            feats = x[idx]
            spatial_scale = 1. / float(
                self.mask_roi_extractor.featmap_strides[idx])
            point_feats = []
            for batch_ind in range(num_imgs):
                # unravel batch dim
                feat = feats[batch_ind].unsqueeze(0)
                inds = (rois[:, 0].long() == batch_ind)
                if inds.any():
                    rel_img_points = rel_roi_point_to_rel_img_point(
                        rois=rois[inds],
                        rel_roi_points=rel_roi_points[inds],
                        img=feat.shape[2:],
                        spatial_scale=spatial_scale).unsqueeze(0)
                    point_feat = point_sample(feat, rel_img_points)
                    point_feat = point_feat.squeeze(0).transpose(0, 1)
                    point_feats.append(point_feat)
            fine_grained_feats.append(torch.cat(point_feats, dim=0))
        return torch.cat(fine_grained_feats, dim=1)

    def predict_mask(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     results_list: InstanceList,
                     rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the mask head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            results_list (list[:obj:`InstanceData`]): Detection results of
                each image.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
            - masks (Tensor): Has a shape (num_instances, H, W).
        """
        # don't need to consider aug_test.
        bboxes = [res.bboxes for res in results_list]
        mask_rois = bbox2roi(bboxes)
        if mask_rois.shape[0] == 0:
            results_list = empty_instances(
                batch_img_metas,
                mask_rois.device,
                task_type='mask',
                instance_results=results_list,
                mask_thr_binary=self.test_cfg.mask_thr_binary)
            return results_list

        mask_results = self._mask_forward(x, mask_rois)
        mask_preds = mask_results['mask_preds']
        # split batch mask prediction back to each image
        num_mask_rois_per_img = [len(res) for res in results_list]
        mask_preds = mask_preds.split(num_mask_rois_per_img, 0)

        # refine mask_preds
        mask_rois = mask_rois.split(num_mask_rois_per_img, 0)
        mask_preds_refined = []
        for i in range(len(batch_img_metas)):
            labels = results_list[i].labels
            x_i = [xx[[i]] for xx in x]
            mask_rois_i = mask_rois[i]
            mask_rois_i[:, 0] = 0
            mask_pred_i = self._mask_point_forward_test(
                x_i, mask_rois_i, labels, mask_preds[i])
            mask_preds_refined.append(mask_pred_i)

        # TODO: Handle the case where rescale is false
        results_list = self.mask_head.predict_by_feat(
            mask_preds=mask_preds_refined,
            results_list=results_list,
            batch_img_metas=batch_img_metas,
            rcnn_test_cfg=self.test_cfg,
            rescale=rescale)
        return results_list