File size: 26,551 Bytes
e8f2571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple

import torch
from mmengine.config import ConfigDict
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.models.task_modules.samplers import PseudoSampler
from mmdet.registry import MODELS
from mmdet.structures import SampleList
from mmdet.structures.bbox import bbox2roi
from mmdet.utils import ConfigType, InstanceList, OptConfigType
from ..utils.misc import empty_instances, unpack_gt_instances
from .cascade_roi_head import CascadeRoIHead


@MODELS.register_module()
class SparseRoIHead(CascadeRoIHead):
    r"""The RoIHead for `Sparse R-CNN: End-to-End Object Detection with
    Learnable Proposals <https://arxiv.org/abs/2011.12450>`_
    and `Instances as Queries <http://arxiv.org/abs/2105.01928>`_

    Args:
        num_stages (int): Number of stage whole iterative process.
            Defaults to 6.
        stage_loss_weights (Tuple[float]): The loss
            weight of each stage. By default all stages have
            the same weight 1.
        bbox_roi_extractor (:obj:`ConfigDict` or dict): Config of box
            roi extractor.
        mask_roi_extractor (:obj:`ConfigDict` or dict): Config of mask
            roi extractor.
        bbox_head (:obj:`ConfigDict` or dict): Config of box head.
        mask_head (:obj:`ConfigDict` or dict): Config of mask head.
        train_cfg (:obj:`ConfigDict` or dict, Optional): Configuration
            information in train stage. Defaults to None.
        test_cfg (:obj:`ConfigDict` or dict, Optional): Configuration
            information in test stage. Defaults to None.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict]): Initialization config dict. Defaults to None.
    """

    def __init__(self,
                 num_stages: int = 6,
                 stage_loss_weights: Tuple[float] = (1, 1, 1, 1, 1, 1),
                 proposal_feature_channel: int = 256,
                 bbox_roi_extractor: ConfigType = dict(
                     type='SingleRoIExtractor',
                     roi_layer=dict(
                         type='RoIAlign', output_size=7, sampling_ratio=2),
                     out_channels=256,
                     featmap_strides=[4, 8, 16, 32]),
                 mask_roi_extractor: OptConfigType = None,
                 bbox_head: ConfigType = dict(
                     type='DIIHead',
                     num_classes=80,
                     num_fcs=2,
                     num_heads=8,
                     num_cls_fcs=1,
                     num_reg_fcs=3,
                     feedforward_channels=2048,
                     hidden_channels=256,
                     dropout=0.0,
                     roi_feat_size=7,
                     ffn_act_cfg=dict(type='ReLU', inplace=True)),
                 mask_head: OptConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 init_cfg: OptConfigType = None) -> None:
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        assert len(stage_loss_weights) == num_stages
        self.num_stages = num_stages
        self.stage_loss_weights = stage_loss_weights
        self.proposal_feature_channel = proposal_feature_channel
        super().__init__(
            num_stages=num_stages,
            stage_loss_weights=stage_loss_weights,
            bbox_roi_extractor=bbox_roi_extractor,
            mask_roi_extractor=mask_roi_extractor,
            bbox_head=bbox_head,
            mask_head=mask_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            init_cfg=init_cfg)
        # train_cfg would be None when run the test.py
        if train_cfg is not None:
            for stage in range(num_stages):
                assert isinstance(self.bbox_sampler[stage], PseudoSampler), \
                    'Sparse R-CNN and QueryInst only support `PseudoSampler`'

    def bbox_loss(self, stage: int, x: Tuple[Tensor],
                  results_list: InstanceList, object_feats: Tensor,
                  batch_img_metas: List[dict],
                  batch_gt_instances: InstanceList) -> dict:
        """Perform forward propagation and loss calculation of the bbox head on
        the features of the upstream network.

        Args:
            stage (int): The current stage in iterative process.
            x (tuple[Tensor]): List of multi-level img features.
            results_list (List[:obj:`InstanceData`]) : List of region
                proposals.
            object_feats (Tensor): The object feature extracted from
                the previous stage.
            batch_img_metas (list[dict]): Meta information of each image.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.

        Returns:
            dict[str, Tensor]: Usually returns a dictionary with keys:

            - `cls_score` (Tensor): Classification scores.
            - `bbox_pred` (Tensor): Box energies / deltas.
            - `bbox_feats` (Tensor): Extract bbox RoI features.
            - `loss_bbox` (dict): A dictionary of bbox loss components.
        """
        proposal_list = [res.bboxes for res in results_list]
        rois = bbox2roi(proposal_list)
        bbox_results = self._bbox_forward(stage, x, rois, object_feats,
                                          batch_img_metas)
        imgs_whwh = torch.cat(
            [res.imgs_whwh[None, ...] for res in results_list])
        cls_pred_list = bbox_results['detached_cls_scores']
        proposal_list = bbox_results['detached_proposals']

        sampling_results = []
        bbox_head = self.bbox_head[stage]
        for i in range(len(batch_img_metas)):
            pred_instances = InstanceData()
            # TODO: Enhance the logic
            pred_instances.bboxes = proposal_list[i]  # for assinger
            pred_instances.scores = cls_pred_list[i]
            pred_instances.priors = proposal_list[i]  # for sampler

            assign_result = self.bbox_assigner[stage].assign(
                pred_instances=pred_instances,
                gt_instances=batch_gt_instances[i],
                gt_instances_ignore=None,
                img_meta=batch_img_metas[i])

            sampling_result = self.bbox_sampler[stage].sample(
                assign_result, pred_instances, batch_gt_instances[i])
            sampling_results.append(sampling_result)

        bbox_results.update(sampling_results=sampling_results)

        cls_score = bbox_results['cls_score']
        decoded_bboxes = bbox_results['decoded_bboxes']
        cls_score = cls_score.view(-1, cls_score.size(-1))
        decoded_bboxes = decoded_bboxes.view(-1, 4)
        bbox_loss_and_target = bbox_head.loss_and_target(
            cls_score,
            decoded_bboxes,
            sampling_results,
            self.train_cfg[stage],
            imgs_whwh=imgs_whwh,
            concat=True)
        bbox_results.update(bbox_loss_and_target)

        # propose for the new proposal_list
        proposal_list = []
        for idx in range(len(batch_img_metas)):
            results = InstanceData()
            results.imgs_whwh = results_list[idx].imgs_whwh
            results.bboxes = bbox_results['detached_proposals'][idx]
            proposal_list.append(results)
        bbox_results.update(results_list=proposal_list)
        return bbox_results

    def _bbox_forward(self, stage: int, x: Tuple[Tensor], rois: Tensor,
                      object_feats: Tensor,
                      batch_img_metas: List[dict]) -> dict:
        """Box head forward function used in both training and testing. Returns
        all regression, classification results and a intermediate feature.

        Args:
            stage (int): The current stage in iterative process.
            x (tuple[Tensor]): List of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
                Each dimension means (img_index, x1, y1, x2, y2).
            object_feats (Tensor): The object feature extracted from
                the previous stage.
            batch_img_metas (list[dict]): Meta information of each image.

        Returns:
            dict[str, Tensor]: a dictionary of bbox head outputs,
            Containing the following results:

            - cls_score (Tensor): The score of each class, has
              shape (batch_size, num_proposals, num_classes)
              when use focal loss or
              (batch_size, num_proposals, num_classes+1)
              otherwise.
            - decoded_bboxes (Tensor): The regression results
              with shape (batch_size, num_proposal, 4).
              The last dimension 4 represents
              [tl_x, tl_y, br_x, br_y].
            - object_feats (Tensor): The object feature extracted
              from current stage
            - detached_cls_scores (list[Tensor]): The detached
              classification results, length is batch_size, and
              each tensor has shape (num_proposal, num_classes).
            - detached_proposals (list[tensor]): The detached
              regression results, length is batch_size, and each
              tensor has shape (num_proposal, 4). The last
              dimension 4 represents [tl_x, tl_y, br_x, br_y].
        """
        num_imgs = len(batch_img_metas)
        bbox_roi_extractor = self.bbox_roi_extractor[stage]
        bbox_head = self.bbox_head[stage]
        bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                        rois)
        cls_score, bbox_pred, object_feats, attn_feats = bbox_head(
            bbox_feats, object_feats)

        fake_bbox_results = dict(
            rois=rois,
            bbox_targets=(rois.new_zeros(len(rois), dtype=torch.long), None),
            bbox_pred=bbox_pred.view(-1, bbox_pred.size(-1)),
            cls_score=cls_score.view(-1, cls_score.size(-1)))
        fake_sampling_results = [
            InstanceData(pos_is_gt=rois.new_zeros(object_feats.size(1)))
            for _ in range(len(batch_img_metas))
        ]

        results_list = bbox_head.refine_bboxes(
            sampling_results=fake_sampling_results,
            bbox_results=fake_bbox_results,
            batch_img_metas=batch_img_metas)
        proposal_list = [res.bboxes for res in results_list]
        bbox_results = dict(
            cls_score=cls_score,
            decoded_bboxes=torch.cat(proposal_list),
            object_feats=object_feats,
            attn_feats=attn_feats,
            # detach then use it in label assign
            detached_cls_scores=[
                cls_score[i].detach() for i in range(num_imgs)
            ],
            detached_proposals=[item.detach() for item in proposal_list])

        return bbox_results

    def _mask_forward(self, stage: int, x: Tuple[Tensor], rois: Tensor,
                      attn_feats) -> dict:
        """Mask head forward function used in both training and testing.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): Tuple of multi-level img features.
            rois (Tensor): RoIs with the shape (n, 5) where the first
                column indicates batch id of each RoI.
            attn_feats (Tensot): Intermediate feature get from the last
                diihead, has shape
                (batch_size*num_proposals, feature_dimensions)

        Returns:
            dict: Usually returns a dictionary with keys:

            - `mask_preds` (Tensor): Mask prediction.
        """
        mask_roi_extractor = self.mask_roi_extractor[stage]
        mask_head = self.mask_head[stage]
        mask_feats = mask_roi_extractor(x[:mask_roi_extractor.num_inputs],
                                        rois)
        # do not support caffe_c4 model anymore
        mask_preds = mask_head(mask_feats, attn_feats)

        mask_results = dict(mask_preds=mask_preds)
        return mask_results

    def mask_loss(self, stage: int, x: Tuple[Tensor], bbox_results: dict,
                  batch_gt_instances: InstanceList,
                  rcnn_train_cfg: ConfigDict) -> dict:
        """Run forward function and calculate loss for mask head in training.

        Args:
            stage (int): The current stage in Cascade RoI Head.
            x (tuple[Tensor]): Tuple of multi-level img features.
            bbox_results (dict): Results obtained from `bbox_loss`.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes``, ``labels``, and
                ``masks`` attributes.
            rcnn_train_cfg (obj:ConfigDict): `train_cfg` of RCNN.

        Returns:
            dict: Usually returns a dictionary with keys:

            - `mask_preds` (Tensor): Mask prediction.
            - `loss_mask` (dict): A dictionary of mask loss components.
        """
        attn_feats = bbox_results['attn_feats']
        sampling_results = bbox_results['sampling_results']

        pos_rois = bbox2roi([res.pos_priors for res in sampling_results])

        attn_feats = torch.cat([
            feats[res.pos_inds]
            for (feats, res) in zip(attn_feats, sampling_results)
        ])
        mask_results = self._mask_forward(stage, x, pos_rois, attn_feats)

        mask_loss_and_target = self.mask_head[stage].loss_and_target(
            mask_preds=mask_results['mask_preds'],
            sampling_results=sampling_results,
            batch_gt_instances=batch_gt_instances,
            rcnn_train_cfg=rcnn_train_cfg)
        mask_results.update(mask_loss_and_target)

        return mask_results

    def loss(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
             batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        roi on the features of the upstream network.

        Args:
            x (tuple[Tensor]): List of multi-level img features.
            rpn_results_list (List[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns:
            dict: a dictionary of loss components of all stage.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
            = outputs

        object_feats = torch.cat(
            [res.pop('features')[None, ...] for res in rpn_results_list])
        results_list = rpn_results_list
        losses = {}
        for stage in range(self.num_stages):
            stage_loss_weight = self.stage_loss_weights[stage]

            # bbox head forward and loss
            bbox_results = self.bbox_loss(
                stage=stage,
                x=x,
                object_feats=object_feats,
                results_list=results_list,
                batch_img_metas=batch_img_metas,
                batch_gt_instances=batch_gt_instances)

            for name, value in bbox_results['loss_bbox'].items():
                losses[f's{stage}.{name}'] = (
                    value * stage_loss_weight if 'loss' in name else value)

            if self.with_mask:
                mask_results = self.mask_loss(
                    stage=stage,
                    x=x,
                    bbox_results=bbox_results,
                    batch_gt_instances=batch_gt_instances,
                    rcnn_train_cfg=self.train_cfg[stage])

                for name, value in mask_results['loss_mask'].items():
                    losses[f's{stage}.{name}'] = (
                        value * stage_loss_weight if 'loss' in name else value)

            object_feats = bbox_results['object_feats']
            results_list = bbox_results['results_list']
        return losses

    def predict_bbox(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     rpn_results_list: InstanceList,
                     rcnn_test_cfg: ConfigType,
                     rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the bbox head and predict detection
        results on the features of the upstream network.

        Args:
            x(tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            rpn_results_list (list[:obj:`InstanceData`]): List of region
                proposals.
            rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        proposal_list = [res.bboxes for res in rpn_results_list]
        object_feats = torch.cat(
            [res.pop('features')[None, ...] for res in rpn_results_list])
        if all([proposal.shape[0] == 0 for proposal in proposal_list]):
            # There is no proposal in the whole batch
            return empty_instances(
                batch_img_metas, x[0].device, task_type='bbox')

        for stage in range(self.num_stages):
            rois = bbox2roi(proposal_list)
            bbox_results = self._bbox_forward(stage, x, rois, object_feats,
                                              batch_img_metas)
            object_feats = bbox_results['object_feats']
            cls_score = bbox_results['cls_score']
            proposal_list = bbox_results['detached_proposals']

        num_classes = self.bbox_head[-1].num_classes

        if self.bbox_head[-1].loss_cls.use_sigmoid:
            cls_score = cls_score.sigmoid()
        else:
            cls_score = cls_score.softmax(-1)[..., :-1]

        topk_inds_list = []
        results_list = []
        for img_id in range(len(batch_img_metas)):
            cls_score_per_img = cls_score[img_id]
            scores_per_img, topk_inds = cls_score_per_img.flatten(0, 1).topk(
                self.test_cfg.max_per_img, sorted=False)
            labels_per_img = topk_inds % num_classes
            bboxes_per_img = proposal_list[img_id][topk_inds // num_classes]
            topk_inds_list.append(topk_inds)
            if rescale and bboxes_per_img.size(0) > 0:
                assert batch_img_metas[img_id].get('scale_factor') is not None
                scale_factor = bboxes_per_img.new_tensor(
                    batch_img_metas[img_id]['scale_factor']).repeat((1, 2))
                bboxes_per_img = (
                    bboxes_per_img.view(bboxes_per_img.size(0), -1, 4) /
                    scale_factor).view(bboxes_per_img.size()[0], -1)

            results = InstanceData()
            results.bboxes = bboxes_per_img
            results.scores = scores_per_img
            results.labels = labels_per_img
            results_list.append(results)
        if self.with_mask:
            for img_id in range(len(batch_img_metas)):
                # add positive information in InstanceData to predict
                # mask results in `mask_head`.
                proposals = bbox_results['detached_proposals'][img_id]
                topk_inds = topk_inds_list[img_id]
                attn_feats = bbox_results['attn_feats'][img_id]

                results_list[img_id].proposals = proposals
                results_list[img_id].topk_inds = topk_inds
                results_list[img_id].attn_feats = attn_feats
        return results_list

    def predict_mask(self,
                     x: Tuple[Tensor],
                     batch_img_metas: List[dict],
                     results_list: InstanceList,
                     rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the mask head and predict detection
        results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Feature maps of all scale level.
            batch_img_metas (list[dict]): List of image information.
            results_list (list[:obj:`InstanceData`]): Detection results of
                each image. Each item usually contains following keys:

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
                - proposal (Tensor): Bboxes predicted from bbox_head,
                  has a shape (num_instances, 4).
                - topk_inds (Tensor): Topk indices of each image, has
                  shape (num_instances, )
                - attn_feats (Tensor): Intermediate feature get from the last
                  diihead, has shape (num_instances, feature_dimensions)

            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Detection results of each image
            after the post process.
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape
              (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4),
              the last dimension 4 arrange as (x1, y1, x2, y2).
            - masks (Tensor): Has a shape (num_instances, H, W).
        """
        proposal_list = [res.pop('proposals') for res in results_list]
        topk_inds_list = [res.pop('topk_inds') for res in results_list]
        attn_feats = torch.cat(
            [res.pop('attn_feats')[None, ...] for res in results_list])

        rois = bbox2roi(proposal_list)

        if rois.shape[0] == 0:
            results_list = empty_instances(
                batch_img_metas,
                rois.device,
                task_type='mask',
                instance_results=results_list,
                mask_thr_binary=self.test_cfg.mask_thr_binary)
            return results_list

        last_stage = self.num_stages - 1
        mask_results = self._mask_forward(last_stage, x, rois, attn_feats)

        num_imgs = len(batch_img_metas)
        mask_results['mask_preds'] = mask_results['mask_preds'].reshape(
            num_imgs, -1, *mask_results['mask_preds'].size()[1:])
        num_classes = self.bbox_head[-1].num_classes

        mask_preds = []
        for img_id in range(num_imgs):
            topk_inds = topk_inds_list[img_id]
            masks_per_img = mask_results['mask_preds'][img_id].flatten(
                0, 1)[topk_inds]
            masks_per_img = masks_per_img[:, None,
                                          ...].repeat(1, num_classes, 1, 1)
            mask_preds.append(masks_per_img)
        results_list = self.mask_head[-1].predict_by_feat(
            mask_preds,
            results_list,
            batch_img_metas,
            rcnn_test_cfg=self.test_cfg,
            rescale=rescale)

        return results_list

    # TODO: Need to refactor later
    def forward(self, x: Tuple[Tensor], rpn_results_list: InstanceList,
                batch_data_samples: SampleList) -> tuple:
        """Network forward process. Usually includes backbone, neck and head
        forward without any post-processing.

        Args:
            x (List[Tensor]): Multi-level features that may have different
                resolutions.
            rpn_results_list (List[:obj:`InstanceData`]): List of region
                proposals.
            batch_data_samples (list[:obj:`DetDataSample`]): The batch
                data samples. It usually includes information such
                as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.

        Returns
            tuple: A tuple of features from ``bbox_head`` and ``mask_head``
            forward.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        (batch_gt_instances, batch_gt_instances_ignore,
         batch_img_metas) = outputs

        all_stage_bbox_results = []
        object_feats = torch.cat(
            [res.pop('features')[None, ...] for res in rpn_results_list])
        results_list = rpn_results_list
        if self.with_bbox:
            for stage in range(self.num_stages):
                bbox_results = self.bbox_loss(
                    stage=stage,
                    x=x,
                    results_list=results_list,
                    object_feats=object_feats,
                    batch_img_metas=batch_img_metas,
                    batch_gt_instances=batch_gt_instances)
                bbox_results.pop('loss_bbox')
                # torch.jit does not support obj:SamplingResult
                bbox_results.pop('results_list')
                bbox_res = bbox_results.copy()
                bbox_res.pop('sampling_results')
                all_stage_bbox_results.append((bbox_res, ))

                if self.with_mask:
                    attn_feats = bbox_results['attn_feats']
                    sampling_results = bbox_results['sampling_results']

                    pos_rois = bbox2roi(
                        [res.pos_priors for res in sampling_results])

                    attn_feats = torch.cat([
                        feats[res.pos_inds]
                        for (feats, res) in zip(attn_feats, sampling_results)
                    ])
                    mask_results = self._mask_forward(stage, x, pos_rois,
                                                      attn_feats)
                    all_stage_bbox_results[-1] += (mask_results, )
        return tuple(all_stage_bbox_results)