|
|
|
import os.path as osp |
|
from typing import List, Optional |
|
|
|
from mmengine.dataset import BaseDataset |
|
from mmengine.fileio import load |
|
from mmengine.utils import is_abs |
|
|
|
from ..registry import DATASETS |
|
|
|
|
|
@DATASETS.register_module() |
|
class BaseDetDataset(BaseDataset): |
|
"""Base dataset for detection. |
|
|
|
Args: |
|
proposal_file (str, optional): Proposals file path. Defaults to None. |
|
file_client_args (dict): Arguments to instantiate the |
|
corresponding backend in mmdet <= 3.0.0rc6. Defaults to None. |
|
backend_args (dict, optional): Arguments to instantiate the |
|
corresponding backend. Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
*args, |
|
seg_map_suffix: str = '.png', |
|
proposal_file: Optional[str] = None, |
|
file_client_args: dict = None, |
|
backend_args: dict = None, |
|
**kwargs) -> None: |
|
self.seg_map_suffix = seg_map_suffix |
|
self.proposal_file = proposal_file |
|
self.backend_args = backend_args |
|
if file_client_args is not None: |
|
raise RuntimeError( |
|
'The `file_client_args` is deprecated, ' |
|
'please use `backend_args` instead, please refer to' |
|
'https://github.com/open-mmlab/mmdetection/blob/main/configs/_base_/datasets/coco_detection.py' |
|
) |
|
super().__init__(*args, **kwargs) |
|
|
|
def full_init(self) -> None: |
|
"""Load annotation file and set ``BaseDataset._fully_initialized`` to |
|
True. |
|
|
|
If ``lazy_init=False``, ``full_init`` will be called during the |
|
instantiation and ``self._fully_initialized`` will be set to True. If |
|
``obj._fully_initialized=False``, the class method decorated by |
|
``force_full_init`` will call ``full_init`` automatically. |
|
|
|
Several steps to initialize annotation: |
|
|
|
- load_data_list: Load annotations from annotation file. |
|
- load_proposals: Load proposals from proposal file, if |
|
`self.proposal_file` is not None. |
|
- filter data information: Filter annotations according to |
|
filter_cfg. |
|
- slice_data: Slice dataset according to ``self._indices`` |
|
- serialize_data: Serialize ``self.data_list`` if |
|
``self.serialize_data`` is True. |
|
""" |
|
if self._fully_initialized: |
|
return |
|
|
|
self.data_list = self.load_data_list() |
|
|
|
if self.proposal_file is not None: |
|
self.load_proposals() |
|
|
|
self.data_list = self.filter_data() |
|
|
|
|
|
if self._indices is not None: |
|
self.data_list = self._get_unserialized_subset(self._indices) |
|
|
|
|
|
if self.serialize_data: |
|
self.data_bytes, self.data_address = self._serialize_data() |
|
|
|
self._fully_initialized = True |
|
|
|
def load_proposals(self) -> None: |
|
"""Load proposals from proposals file. |
|
|
|
The `proposals_list` should be a dict[img_path: proposals] |
|
with the same length as `data_list`. And the `proposals` should be |
|
a `dict` or :obj:`InstanceData` usually contains following keys. |
|
|
|
- bboxes (np.ndarry): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
- scores (np.ndarry): Classification scores, has a shape |
|
(num_instance, ). |
|
""" |
|
|
|
if not is_abs(self.proposal_file): |
|
self.proposal_file = osp.join(self.data_root, self.proposal_file) |
|
proposals_list = load( |
|
self.proposal_file, backend_args=self.backend_args) |
|
assert len(self.data_list) == len(proposals_list) |
|
for data_info in self.data_list: |
|
img_path = data_info['img_path'] |
|
|
|
|
|
file_name = osp.join( |
|
osp.split(osp.split(img_path)[0])[-1], |
|
osp.split(img_path)[-1]) |
|
proposals = proposals_list[file_name] |
|
data_info['proposals'] = proposals |
|
|
|
def get_cat_ids(self, idx: int) -> List[int]: |
|
"""Get COCO category ids by index. |
|
|
|
Args: |
|
idx (int): Index of data. |
|
|
|
Returns: |
|
List[int]: All categories in the image of specified index. |
|
""" |
|
instances = self.get_data_info(idx)['instances'] |
|
return [instance['bbox_label'] for instance in instances] |
|
|