|
|
|
|
|
|
|
|
|
from typing import List |
|
|
|
from mmdet.registry import DATASETS |
|
from .coco import CocoDataset |
|
|
|
|
|
@DATASETS.register_module() |
|
class CityscapesDataset(CocoDataset): |
|
"""Dataset for Cityscapes.""" |
|
|
|
METAINFO = { |
|
'classes': ('person', 'rider', 'car', 'truck', 'bus', 'train', |
|
'motorcycle', 'bicycle'), |
|
'palette': [(220, 20, 60), (255, 0, 0), (0, 0, 142), (0, 0, 70), |
|
(0, 60, 100), (0, 80, 100), (0, 0, 230), (119, 11, 32)] |
|
} |
|
|
|
def filter_data(self) -> List[dict]: |
|
"""Filter annotations according to filter_cfg. |
|
|
|
Returns: |
|
List[dict]: Filtered results. |
|
""" |
|
if self.test_mode: |
|
return self.data_list |
|
|
|
if self.filter_cfg is None: |
|
return self.data_list |
|
|
|
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) |
|
min_size = self.filter_cfg.get('min_size', 0) |
|
|
|
|
|
ids_with_ann = set(data_info['img_id'] for data_info in self.data_list) |
|
|
|
ids_in_cat = set() |
|
for i, class_id in enumerate(self.cat_ids): |
|
ids_in_cat |= set(self.cat_img_map[class_id]) |
|
|
|
|
|
ids_in_cat &= ids_with_ann |
|
|
|
valid_data_infos = [] |
|
for i, data_info in enumerate(self.data_list): |
|
img_id = data_info['img_id'] |
|
width = data_info['width'] |
|
height = data_info['height'] |
|
all_is_crowd = all([ |
|
instance['ignore_flag'] == 1 |
|
for instance in data_info['instances'] |
|
]) |
|
if filter_empty_gt and (img_id not in ids_in_cat or all_is_crowd): |
|
continue |
|
if min(width, height) >= min_size: |
|
valid_data_infos.append(data_info) |
|
|
|
return valid_data_infos |
|
|