|
|
|
|
|
|
|
import copy |
|
import os.path as osp |
|
from typing import Any, Callable, List, Optional, Sequence, Tuple, Union |
|
|
|
from mmengine.fileio import get_local_path |
|
|
|
from mmdet.registry import DATASETS |
|
from mmdet.datasets.api_wrappers import COCO |
|
from mmdet.datasets.base_det_dataset import BaseDetDataset |
|
from mmdet.datasets.coco import CocoDataset |
|
from mmengine.utils import is_abs |
|
|
|
|
|
@DATASETS.register_module() |
|
class HSIDataset(CocoDataset): |
|
"""Dataset for COCO.""" |
|
|
|
METAINFO = { |
|
'classes': |
|
('CB', 'MP', 'VO', 'ZO', 'TO', 'FG', 'GS', 'IP', 'IS', 'NP', 'LO', 'NO', 'NC', 'NF', 'K_N', 'K_O', 'P_P', 'P_O', 'V_Y_W', 'C_Y_W','BlueTrap','BrownTrap', |
|
'Airport', 'Brown', 'DarkGreen', 'PeaGreen', 'FauxVineyardGreen'), |
|
|
|
'palette': |
|
[(220, 20, 60), (119, 11, 32), (0, 0, 230), (106, 0, 228), |
|
(0, 60, 100), (0, 0, 70), (250, 170, 30), |
|
(100, 170, 30), (220, 220, 0), (175, 116, 175), (250, 0, 30), |
|
(165, 42, 42), (255, 77, 255),(0, 226, 252), (182, 182, 255), |
|
(0, 82, 0), (120, 166, 157),(110, 76, 0), (174, 57, 255), |
|
(199, 100, 0),[0, 0, 255],(199, 100, 0), |
|
] |
|
} |
|
COCOAPI = COCO |
|
|
|
ANN_ID_UNIQUE = True |
|
|
|
def __init__(self, |
|
*args, |
|
seg_prefix: Optional[str] = None, |
|
abu_prefix: Optional[str] = None, |
|
**kwargs) -> None: |
|
self.seg_prefix = seg_prefix |
|
self.abu_prefix = abu_prefix |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
def _join_prefix(self): |
|
"""Join ``self.data_root`` with ``self.data_prefix`` and |
|
``self.ann_file``. |
|
|
|
Examples: |
|
>>> # self.data_prefix contains relative paths |
|
>>> self.data_root = 'a/b/c' |
|
>>> self.data_prefix = dict(img='d/e/') |
|
>>> self.ann_file = 'f' |
|
>>> self._join_prefix() |
|
>>> self.data_prefix |
|
dict(img='a/b/c/d/e') |
|
>>> self.ann_file |
|
'a/b/c/f' |
|
>>> # self.data_prefix contains absolute paths |
|
>>> self.data_root = 'a/b/c' |
|
>>> self.data_prefix = dict(img='/d/e/') |
|
>>> self.ann_file = 'f' |
|
>>> self._join_prefix() |
|
>>> self.data_prefix |
|
dict(img='/d/e') |
|
>>> self.ann_file |
|
'a/b/c/f' |
|
""" |
|
|
|
|
|
if not is_abs(self.ann_file) and self.ann_file: |
|
self.ann_file = osp.join(self.data_root, self.ann_file) |
|
|
|
|
|
for data_key, prefix in self.data_prefix.items(): |
|
if isinstance(prefix, str): |
|
if not is_abs(prefix): |
|
self.data_prefix[data_key] = osp.join( |
|
self.data_root, prefix) |
|
else: |
|
self.data_prefix[data_key] = prefix |
|
else: |
|
raise TypeError('prefix should be a string, but got ' |
|
f'{type(prefix)}') |
|
if self.seg_prefix is not None: |
|
for data_key, prefix in self.seg_prefix.items(): |
|
if isinstance(prefix, str): |
|
if not is_abs(prefix): |
|
self.seg_prefix[data_key] = osp.join( |
|
self.data_root, prefix) |
|
else: |
|
self.seg_prefix[data_key] = prefix |
|
else: |
|
raise TypeError('prefix should be a string, but got ' |
|
f'{type(prefix)}') |
|
if self.abu_prefix is not None: |
|
for data_key, prefix in self.abu_prefix.items(): |
|
if isinstance(prefix, str): |
|
if not is_abs(prefix): |
|
self.abu_prefix[data_key] = osp.join( |
|
self.data_root, prefix) |
|
else: |
|
self.abu_prefix[data_key] = prefix |
|
else: |
|
raise TypeError('prefix should be a string, but got ' |
|
f'{type(prefix)}') |
|
|
|
|
|
|
|
|
|
def load_data_list(self) -> List[dict]: |
|
"""Load annotations from an annotation file named as ``self.ann_file`` |
|
|
|
Returns: |
|
List[dict]: A list of annotation. |
|
""" |
|
with get_local_path( |
|
self.ann_file, backend_args=self.backend_args) as local_path: |
|
self.coco = self.COCOAPI(local_path) |
|
|
|
|
|
self.cat_ids = self.coco.get_cat_ids( |
|
cat_names=self.metainfo['classes']) |
|
self.cat2label = {cat_id: i for i, cat_id in enumerate(self.cat_ids)} |
|
self.cat_img_map = copy.deepcopy(self.coco.cat_img_map) |
|
|
|
img_ids = self.coco.get_img_ids() |
|
data_list = [] |
|
total_ann_ids = [] |
|
for img_id in img_ids: |
|
raw_img_info = self.coco.load_imgs([img_id])[0] |
|
raw_img_info['img_id'] = img_id |
|
|
|
ann_ids = self.coco.get_ann_ids(img_ids=[img_id]) |
|
raw_ann_info = self.coco.load_anns(ann_ids) |
|
total_ann_ids.extend(ann_ids) |
|
|
|
parsed_data_info = self.parse_data_info({ |
|
'raw_ann_info': |
|
raw_ann_info, |
|
'raw_img_info': |
|
raw_img_info |
|
}) |
|
data_list.append(parsed_data_info) |
|
if self.ANN_ID_UNIQUE: |
|
assert len(set(total_ann_ids)) == len( |
|
total_ann_ids |
|
), f"Annotation ids in '{self.ann_file}' are not unique!" |
|
|
|
del self.coco |
|
|
|
return data_list |
|
|
|
def parse_data_info(self, raw_data_info: dict) -> Union[dict, List[dict]]: |
|
"""Parse raw annotation to target format. |
|
|
|
Args: |
|
raw_data_info (dict): Raw data information load from ``ann_file`` |
|
|
|
Returns: |
|
Union[dict, List[dict]]: Parsed annotation. |
|
""" |
|
img_info = raw_data_info['raw_img_info'] |
|
ann_info = raw_data_info['raw_ann_info'] |
|
|
|
data_info = {} |
|
|
|
|
|
img_path = osp.join(self.data_prefix['img'], img_info['file_name']) |
|
if self.data_prefix.get('seg', None): |
|
seg_map_path = osp.join( |
|
self.data_prefix['seg'], |
|
img_info['file_name'].rsplit('.', 1)[0] + self.seg_map_suffix) |
|
else: |
|
seg_map_path = None |
|
|
|
if self.seg_prefix is not None: |
|
seg_path = osp.join(self.seg_prefix['img'], img_info['file_name']).replace('.npy', '.png') |
|
else: |
|
seg_path = None |
|
if self.abu_prefix is not None: |
|
abu_path = osp.join(self.abu_prefix['img'], img_info['file_name']).replace('.npy', '.mat') |
|
else: |
|
abu_path = None |
|
|
|
|
|
data_info['img_path'] = img_path |
|
data_info['img_id'] = img_info['img_id'] |
|
data_info['seg_map_path'] = seg_map_path |
|
data_info['seg_path'] = seg_path |
|
data_info['abu_path'] = abu_path |
|
data_info['height'] = img_info['height'] |
|
data_info['width'] = img_info['width'] |
|
|
|
instances = [] |
|
for i, ann in enumerate(ann_info): |
|
instance = {} |
|
|
|
if ann.get('ignore', False): |
|
continue |
|
x1, y1, w, h = ann['bbox'] |
|
inter_w = max(0, min(x1 + w, img_info['width']) - max(x1, 0)) |
|
inter_h = max(0, min(y1 + h, img_info['height']) - max(y1, 0)) |
|
if inter_w * inter_h == 0: |
|
continue |
|
if ann['area'] <= 0 or w < 1 or h < 1: |
|
continue |
|
if ann['category_id'] not in self.cat_ids: |
|
continue |
|
bbox = [x1, y1, x1 + w, y1 + h] |
|
|
|
if ann.get('iscrowd', False): |
|
instance['ignore_flag'] = 1 |
|
else: |
|
instance['ignore_flag'] = 0 |
|
instance['bbox'] = bbox |
|
instance['bbox_label'] = self.cat2label[ann['category_id']] |
|
|
|
if ann.get('segmentation', None): |
|
instance['mask'] = ann['segmentation'] |
|
|
|
instances.append(instance) |
|
data_info['instances'] = instances |
|
return data_info |
|
|
|
def filter_data(self) -> List[dict]: |
|
"""Filter annotations according to filter_cfg. |
|
|
|
Returns: |
|
List[dict]: Filtered results. |
|
""" |
|
if self.test_mode: |
|
return self.data_list |
|
|
|
if self.filter_cfg is None: |
|
return self.data_list |
|
filter_empty_gt = self.filter_cfg.get('filter_empty_gt', False) |
|
min_size = self.filter_cfg.get('min_size', 0) |
|
|
|
ids_with_ann = set(data_info['img_id'] for data_info in self.data_list) |
|
|
|
ids_in_cat = set() |
|
for i, class_id in enumerate(self.cat_ids): |
|
ids_in_cat |= set(self.cat_img_map[class_id]) |
|
|
|
|
|
ids_in_cat &= ids_with_ann |
|
valid_data_infos = [] |
|
for i, data_info in enumerate(self.data_list): |
|
img_id = data_info['img_id'] |
|
width = data_info['width'] |
|
height = data_info['height'] |
|
if filter_empty_gt and img_id not in ids_in_cat: |
|
continue |
|
if min(width, height) >= min_size: |
|
valid_data_infos.append(data_info) |
|
return valid_data_infos |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|