|
|
|
import warnings |
|
|
|
import torch.nn as nn |
|
from mmcv.cnn import VGG |
|
from mmengine.model import BaseModule |
|
|
|
from mmdet.registry import MODELS |
|
from ..necks import ssd_neck |
|
|
|
|
|
@MODELS.register_module() |
|
class SSDVGG(VGG, BaseModule): |
|
"""VGG Backbone network for single-shot-detection. |
|
|
|
Args: |
|
depth (int): Depth of vgg, from {11, 13, 16, 19}. |
|
with_last_pool (bool): Whether to add a pooling layer at the last |
|
of the model |
|
ceil_mode (bool): When True, will use `ceil` instead of `floor` |
|
to compute the output shape. |
|
out_indices (Sequence[int]): Output from which stages. |
|
out_feature_indices (Sequence[int]): Output from which feature map. |
|
pretrained (str, optional): model pretrained path. Default: None |
|
init_cfg (dict or list[dict], optional): Initialization config dict. |
|
Default: None |
|
input_size (int, optional): Deprecated argumment. |
|
Width and height of input, from {300, 512}. |
|
l2_norm_scale (float, optional) : Deprecated argumment. |
|
L2 normalization layer init scale. |
|
|
|
Example: |
|
>>> self = SSDVGG(input_size=300, depth=11) |
|
>>> self.eval() |
|
>>> inputs = torch.rand(1, 3, 300, 300) |
|
>>> level_outputs = self.forward(inputs) |
|
>>> for level_out in level_outputs: |
|
... print(tuple(level_out.shape)) |
|
(1, 1024, 19, 19) |
|
(1, 512, 10, 10) |
|
(1, 256, 5, 5) |
|
(1, 256, 3, 3) |
|
(1, 256, 1, 1) |
|
""" |
|
extra_setting = { |
|
300: (256, 'S', 512, 128, 'S', 256, 128, 256, 128, 256), |
|
512: (256, 'S', 512, 128, 'S', 256, 128, 'S', 256, 128, 'S', 256, 128), |
|
} |
|
|
|
def __init__(self, |
|
depth, |
|
inplanes =3, |
|
with_last_pool=False, |
|
ceil_mode=True, |
|
out_indices=(3, 4), |
|
out_feature_indices=(22, 34), |
|
pretrained=None, |
|
init_cfg=None, |
|
input_size=None, |
|
l2_norm_scale=None): |
|
|
|
super(SSDVGG, self).__init__( |
|
depth, |
|
with_last_pool=with_last_pool, |
|
inplanes=inplanes, |
|
ceil_mode=ceil_mode, |
|
out_indices=out_indices) |
|
|
|
self.features.add_module( |
|
str(len(self.features)), |
|
nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) |
|
self.features.add_module( |
|
str(len(self.features)), |
|
nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)) |
|
self.features.add_module( |
|
str(len(self.features)), nn.ReLU(inplace=True)) |
|
self.features.add_module( |
|
str(len(self.features)), nn.Conv2d(1024, 1024, kernel_size=1)) |
|
self.features.add_module( |
|
str(len(self.features)), nn.ReLU(inplace=True)) |
|
self.out_feature_indices = out_feature_indices |
|
|
|
assert not (init_cfg and pretrained), \ |
|
'init_cfg and pretrained cannot be specified at the same time' |
|
|
|
if init_cfg is not None: |
|
self.init_cfg = init_cfg |
|
elif isinstance(pretrained, str): |
|
warnings.warn('DeprecationWarning: pretrained is deprecated, ' |
|
'please use "init_cfg" instead') |
|
self.init_cfg = dict(type='Pretrained', checkpoint=pretrained) |
|
elif pretrained is None: |
|
self.init_cfg = [ |
|
dict(type='Kaiming', layer='Conv2d'), |
|
dict(type='Constant', val=1, layer='BatchNorm2d'), |
|
dict(type='Normal', std=0.01, layer='Linear'), |
|
] |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
if input_size is not None: |
|
warnings.warn('DeprecationWarning: input_size is deprecated') |
|
if l2_norm_scale is not None: |
|
warnings.warn('DeprecationWarning: l2_norm_scale in VGG is ' |
|
'deprecated, it has been moved to SSDNeck.') |
|
|
|
def init_weights(self, pretrained=None): |
|
super(VGG, self).init_weights() |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
outs = [] |
|
for i, layer in enumerate(self.features): |
|
x = layer(x) |
|
if i in self.out_feature_indices: |
|
outs.append(x) |
|
|
|
if len(outs) == 1: |
|
return outs[0] |
|
else: |
|
return tuple(outs) |
|
|
|
|
|
class L2Norm(ssd_neck.L2Norm): |
|
|
|
def __init__(self, **kwargs): |
|
super(L2Norm, self).__init__(**kwargs) |
|
warnings.warn('DeprecationWarning: L2Norm in ssd_vgg.py ' |
|
'is deprecated, please use L2Norm in ' |
|
'mmdet/models/necks/ssd_neck.py instead') |
|
|