|
|
|
from __future__ import division |
|
import copy |
|
from typing import Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from mmcv.ops import DeformConv2d |
|
from mmengine.config import ConfigDict |
|
from mmengine.model import BaseModule, ModuleList |
|
from mmengine.structures import InstanceData |
|
from torch import Tensor |
|
|
|
from mmdet.registry import MODELS, TASK_UTILS |
|
from mmdet.structures import SampleList |
|
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, |
|
OptInstanceList, OptMultiConfig) |
|
from ..task_modules.assigners import RegionAssigner |
|
from ..task_modules.samplers import PseudoSampler |
|
from ..utils import (images_to_levels, multi_apply, select_single_mlvl, |
|
unpack_gt_instances) |
|
from .base_dense_head import BaseDenseHead |
|
from .rpn_head import RPNHead |
|
|
|
|
|
class AdaptiveConv(BaseModule): |
|
"""AdaptiveConv used to adapt the sampling location with the anchors. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input image. |
|
out_channels (int): Number of channels produced by the convolution. |
|
kernel_size (int or tuple[int]): Size of the conv kernel. |
|
Defaults to 3. |
|
stride (int or tuple[int]): Stride of the convolution. Defaults to 1. |
|
padding (int or tuple[int]): Zero-padding added to both sides of |
|
the input. Defaults to 1. |
|
dilation (int or tuple[int]): Spacing between kernel elements. |
|
Defaults to 3. |
|
groups (int): Number of blocked connections from input channels to |
|
output channels. Defaults to 1. |
|
bias (bool): If set True, adds a learnable bias to the output. |
|
Defaults to False. |
|
adapt_type (str): Type of adaptive conv, can be either ``offset`` |
|
(arbitrary anchors) or 'dilation' (uniform anchor). |
|
Defaults to 'dilation'. |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ |
|
list[dict]): Initialization config dict. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
kernel_size: Union[int, Tuple[int]] = 3, |
|
stride: Union[int, Tuple[int]] = 1, |
|
padding: Union[int, Tuple[int]] = 1, |
|
dilation: Union[int, Tuple[int]] = 3, |
|
groups: int = 1, |
|
bias: bool = False, |
|
adapt_type: str = 'dilation', |
|
init_cfg: MultiConfig = dict( |
|
type='Normal', std=0.01, override=dict(name='conv')) |
|
) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
assert adapt_type in ['offset', 'dilation'] |
|
self.adapt_type = adapt_type |
|
|
|
assert kernel_size == 3, 'Adaptive conv only supports kernels 3' |
|
if self.adapt_type == 'offset': |
|
assert stride == 1 and padding == 1 and groups == 1, \ |
|
'Adaptive conv offset mode only supports padding: {1}, ' \ |
|
f'stride: {1}, groups: {1}' |
|
self.conv = DeformConv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
padding=padding, |
|
stride=stride, |
|
groups=groups, |
|
bias=bias) |
|
else: |
|
self.conv = nn.Conv2d( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
padding=dilation, |
|
dilation=dilation) |
|
|
|
def forward(self, x: Tensor, offset: Tensor) -> Tensor: |
|
"""Forward function.""" |
|
if self.adapt_type == 'offset': |
|
N, _, H, W = x.shape |
|
assert offset is not None |
|
assert H * W == offset.shape[1] |
|
|
|
offset = offset.permute(0, 2, 1).reshape(N, -1, H, W) |
|
offset = offset.contiguous() |
|
x = self.conv(x, offset) |
|
else: |
|
assert offset is None |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
@MODELS.register_module() |
|
class StageCascadeRPNHead(RPNHead): |
|
"""Stage of CascadeRPNHead. |
|
|
|
Args: |
|
in_channels (int): Number of channels in the input feature map. |
|
anchor_generator (:obj:`ConfigDict` or dict): anchor generator config. |
|
adapt_cfg (:obj:`ConfigDict` or dict): adaptation config. |
|
bridged_feature (bool): whether update rpn feature. Defaults to False. |
|
with_cls (bool): whether use classification branch. Defaults to True. |
|
init_cfg :obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or |
|
list[dict], optional): Initialization config dict. |
|
Defaults to None. |
|
""" |
|
|
|
def __init__(self, |
|
in_channels: int, |
|
anchor_generator: ConfigType = dict( |
|
type='AnchorGenerator', |
|
scales=[8], |
|
ratios=[1.0], |
|
strides=[4, 8, 16, 32, 64]), |
|
adapt_cfg: ConfigType = dict(type='dilation', dilation=3), |
|
bridged_feature: bool = False, |
|
with_cls: bool = True, |
|
init_cfg: OptMultiConfig = None, |
|
**kwargs) -> None: |
|
self.with_cls = with_cls |
|
self.anchor_strides = anchor_generator['strides'] |
|
self.anchor_scales = anchor_generator['scales'] |
|
self.bridged_feature = bridged_feature |
|
self.adapt_cfg = adapt_cfg |
|
super().__init__( |
|
in_channels=in_channels, |
|
anchor_generator=anchor_generator, |
|
init_cfg=init_cfg, |
|
**kwargs) |
|
|
|
|
|
if self.train_cfg: |
|
self.assigner = TASK_UTILS.build(self.train_cfg['assigner']) |
|
|
|
if self.train_cfg.get('sampler', None) is not None: |
|
self.sampler = TASK_UTILS.build( |
|
self.train_cfg['sampler'], default_args=dict(context=self)) |
|
else: |
|
self.sampler = PseudoSampler(context=self) |
|
|
|
if init_cfg is None: |
|
self.init_cfg = dict( |
|
type='Normal', std=0.01, override=[dict(name='rpn_reg')]) |
|
if self.with_cls: |
|
self.init_cfg['override'].append(dict(name='rpn_cls')) |
|
|
|
def _init_layers(self) -> None: |
|
"""Init layers of a CascadeRPN stage.""" |
|
adapt_cfg = copy.deepcopy(self.adapt_cfg) |
|
adapt_cfg['adapt_type'] = adapt_cfg.pop('type') |
|
self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels, |
|
**adapt_cfg) |
|
if self.with_cls: |
|
self.rpn_cls = nn.Conv2d(self.feat_channels, |
|
self.num_anchors * self.cls_out_channels, |
|
1) |
|
self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward_single(self, x: Tensor, offset: Tensor) -> Tuple[Tensor]: |
|
"""Forward function of single scale.""" |
|
bridged_x = x |
|
x = self.relu(self.rpn_conv(x, offset)) |
|
if self.bridged_feature: |
|
bridged_x = x |
|
cls_score = self.rpn_cls(x) if self.with_cls else None |
|
bbox_pred = self.rpn_reg(x) |
|
return bridged_x, cls_score, bbox_pred |
|
|
|
def forward( |
|
self, |
|
feats: List[Tensor], |
|
offset_list: Optional[List[Tensor]] = None) -> Tuple[List[Tensor]]: |
|
"""Forward function.""" |
|
if offset_list is None: |
|
offset_list = [None for _ in range(len(feats))] |
|
return multi_apply(self.forward_single, feats, offset_list) |
|
|
|
def _region_targets_single(self, flat_anchors: Tensor, valid_flags: Tensor, |
|
gt_instances: InstanceData, img_meta: dict, |
|
gt_instances_ignore: InstanceData, |
|
featmap_sizes: List[Tuple[int, int]], |
|
num_level_anchors: List[int]) -> tuple: |
|
"""Get anchor targets based on region for single level. |
|
|
|
Args: |
|
flat_anchors (Tensor): Multi-level anchors of the image, which are |
|
concatenated into a single tensor of shape (num_anchors, 4) |
|
valid_flags (Tensor): Multi level valid flags of the image, |
|
which are concatenated into a single tensor of |
|
shape (num_anchors, ). |
|
gt_instances (:obj:`InstanceData`): Ground truth of instance |
|
annotations. It should includes ``bboxes`` and ``labels`` |
|
attributes. |
|
img_meta (dict): Meta information for current image. |
|
gt_instances_ignore (:obj:`InstanceData`, optional): Instances |
|
to be ignored during training. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
featmap_sizes (list[Tuple[int, int]]): Feature map size each level. |
|
num_level_anchors (list[int]): The number of anchors in each level. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- labels (Tensor): Labels of each level. |
|
- label_weights (Tensor): Label weights of each level. |
|
- bbox_targets (Tensor): BBox targets of each level. |
|
- bbox_weights (Tensor): BBox weights of each level. |
|
- pos_inds (Tensor): positive samples indexes. |
|
- neg_inds (Tensor): negative samples indexes. |
|
- sampling_result (:obj:`SamplingResult`): Sampling results. |
|
""" |
|
pred_instances = InstanceData() |
|
pred_instances.priors = flat_anchors |
|
pred_instances.valid_flags = valid_flags |
|
|
|
assign_result = self.assigner.assign( |
|
pred_instances, |
|
gt_instances, |
|
img_meta, |
|
featmap_sizes, |
|
num_level_anchors, |
|
self.anchor_scales[0], |
|
self.anchor_strides, |
|
gt_instances_ignore=gt_instances_ignore, |
|
allowed_border=self.train_cfg['allowed_border']) |
|
sampling_result = self.sampler.sample(assign_result, pred_instances, |
|
gt_instances) |
|
|
|
num_anchors = flat_anchors.shape[0] |
|
bbox_targets = torch.zeros_like(flat_anchors) |
|
bbox_weights = torch.zeros_like(flat_anchors) |
|
labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long) |
|
label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float) |
|
|
|
pos_inds = sampling_result.pos_inds |
|
neg_inds = sampling_result.neg_inds |
|
if len(pos_inds) > 0: |
|
if not self.reg_decoded_bbox: |
|
pos_bbox_targets = self.bbox_coder.encode( |
|
sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes) |
|
else: |
|
pos_bbox_targets = sampling_result.pos_gt_bboxes |
|
bbox_targets[pos_inds, :] = pos_bbox_targets |
|
bbox_weights[pos_inds, :] = 1.0 |
|
labels[pos_inds] = sampling_result.pos_gt_labels |
|
if self.train_cfg['pos_weight'] <= 0: |
|
label_weights[pos_inds] = 1.0 |
|
else: |
|
label_weights[pos_inds] = self.train_cfg['pos_weight'] |
|
if len(neg_inds) > 0: |
|
label_weights[neg_inds] = 1.0 |
|
|
|
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds, |
|
neg_inds, sampling_result) |
|
|
|
def region_targets( |
|
self, |
|
anchor_list: List[List[Tensor]], |
|
valid_flag_list: List[List[Tensor]], |
|
featmap_sizes: List[Tuple[int, int]], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
return_sampling_results: bool = False, |
|
) -> tuple: |
|
"""Compute regression and classification targets for anchors when using |
|
RegionAssigner. |
|
|
|
Args: |
|
anchor_list (list[list[Tensor]]): Multi level anchors of each |
|
image. |
|
valid_flag_list (list[list[Tensor]]): Multi level valid flags of |
|
each image. |
|
featmap_sizes (list[Tuple[int, int]]): Feature map size each level. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- labels_list (list[Tensor]): Labels of each level. |
|
- label_weights_list (list[Tensor]): Label weights of each |
|
level. |
|
- bbox_targets_list (list[Tensor]): BBox targets of each level. |
|
- bbox_weights_list (list[Tensor]): BBox weights of each level. |
|
- avg_factor (int): Average factor that is used to average |
|
the loss. When using sampling method, avg_factor is usually |
|
the sum of positive and negative priors. When using |
|
``PseudoSampler``, ``avg_factor`` is usually equal to the |
|
number of positive priors. |
|
""" |
|
num_imgs = len(batch_img_metas) |
|
assert len(anchor_list) == len(valid_flag_list) == num_imgs |
|
|
|
if batch_gt_instances_ignore is None: |
|
batch_gt_instances_ignore = [None] * num_imgs |
|
|
|
|
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
|
|
concat_anchor_list = [] |
|
concat_valid_flag_list = [] |
|
for i in range(num_imgs): |
|
assert len(anchor_list[i]) == len(valid_flag_list[i]) |
|
concat_anchor_list.append(torch.cat(anchor_list[i])) |
|
concat_valid_flag_list.append(torch.cat(valid_flag_list[i])) |
|
|
|
|
|
(all_labels, all_label_weights, all_bbox_targets, all_bbox_weights, |
|
pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply( |
|
self._region_targets_single, |
|
concat_anchor_list, |
|
concat_valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore, |
|
featmap_sizes=featmap_sizes, |
|
num_level_anchors=num_level_anchors) |
|
|
|
if any([labels is None for labels in all_labels]): |
|
return None |
|
|
|
avg_factor = sum( |
|
[results.avg_factor for results in sampling_results_list]) |
|
|
|
labels_list = images_to_levels(all_labels, num_level_anchors) |
|
label_weights_list = images_to_levels(all_label_weights, |
|
num_level_anchors) |
|
bbox_targets_list = images_to_levels(all_bbox_targets, |
|
num_level_anchors) |
|
bbox_weights_list = images_to_levels(all_bbox_weights, |
|
num_level_anchors) |
|
res = (labels_list, label_weights_list, bbox_targets_list, |
|
bbox_weights_list, avg_factor) |
|
if return_sampling_results: |
|
res = res + (sampling_results_list, ) |
|
return res |
|
|
|
def get_targets( |
|
self, |
|
anchor_list: List[List[Tensor]], |
|
valid_flag_list: List[List[Tensor]], |
|
featmap_sizes: List[Tuple[int, int]], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None, |
|
return_sampling_results: bool = False, |
|
) -> tuple: |
|
"""Compute regression and classification targets for anchors. |
|
|
|
Args: |
|
anchor_list (list[list[Tensor]]): Multi level anchors of each |
|
image. |
|
valid_flag_list (list[list[Tensor]]): Multi level valid flags of |
|
each image. |
|
featmap_sizes (list[Tuple[int, int]]): Feature map size each level. |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
return_sampling_results (bool): Whether to return the sampling |
|
results. Defaults to False. |
|
|
|
Returns: |
|
tuple: |
|
|
|
- labels_list (list[Tensor]): Labels of each level. |
|
- label_weights_list (list[Tensor]): Label weights of each |
|
level. |
|
- bbox_targets_list (list[Tensor]): BBox targets of each level. |
|
- bbox_weights_list (list[Tensor]): BBox weights of each level. |
|
- avg_factor (int): Average factor that is used to average |
|
the loss. When using sampling method, avg_factor is usually |
|
the sum of positive and negative priors. When using |
|
``PseudoSampler``, ``avg_factor`` is usually equal to the |
|
number of positive priors. |
|
""" |
|
if isinstance(self.assigner, RegionAssigner): |
|
cls_reg_targets = self.region_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
featmap_sizes, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore, |
|
return_sampling_results=return_sampling_results) |
|
else: |
|
cls_reg_targets = super().get_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore, |
|
return_sampling_results=return_sampling_results) |
|
return cls_reg_targets |
|
|
|
def anchor_offset(self, anchor_list: List[List[Tensor]], |
|
anchor_strides: List[int], |
|
featmap_sizes: List[Tuple[int, int]]) -> List[Tensor]: |
|
""" Get offset for deformable conv based on anchor shape |
|
NOTE: currently support deformable kernel_size=3 and dilation=1 |
|
|
|
Args: |
|
anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of |
|
multi-level anchors |
|
anchor_strides (list[int]): anchor stride of each level |
|
|
|
Returns: |
|
list[tensor]: offset of DeformConv kernel with shapes of |
|
[NLVL, NA, 2, 18]. |
|
""" |
|
|
|
def _shape_offset(anchors, stride, ks=3, dilation=1): |
|
|
|
assert ks == 3 and dilation == 1 |
|
pad = (ks - 1) // 2 |
|
idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device) |
|
yy, xx = torch.meshgrid(idx, idx) |
|
xx = xx.reshape(-1) |
|
yy = yy.reshape(-1) |
|
w = (anchors[:, 2] - anchors[:, 0]) / stride |
|
h = (anchors[:, 3] - anchors[:, 1]) / stride |
|
w = w / (ks - 1) - dilation |
|
h = h / (ks - 1) - dilation |
|
offset_x = w[:, None] * xx |
|
offset_y = h[:, None] * yy |
|
return offset_x, offset_y |
|
|
|
def _ctr_offset(anchors, stride, featmap_size): |
|
feat_h, feat_w = featmap_size |
|
assert len(anchors) == feat_h * feat_w |
|
|
|
x = (anchors[:, 0] + anchors[:, 2]) * 0.5 |
|
y = (anchors[:, 1] + anchors[:, 3]) * 0.5 |
|
|
|
x = x / stride |
|
y = y / stride |
|
|
|
xx = torch.arange(0, feat_w, device=anchors.device) |
|
yy = torch.arange(0, feat_h, device=anchors.device) |
|
yy, xx = torch.meshgrid(yy, xx) |
|
xx = xx.reshape(-1).type_as(x) |
|
yy = yy.reshape(-1).type_as(y) |
|
|
|
offset_x = x - xx |
|
offset_y = y - yy |
|
return offset_x, offset_y |
|
|
|
num_imgs = len(anchor_list) |
|
num_lvls = len(anchor_list[0]) |
|
dtype = anchor_list[0][0].dtype |
|
device = anchor_list[0][0].device |
|
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]] |
|
|
|
offset_list = [] |
|
for i in range(num_imgs): |
|
mlvl_offset = [] |
|
for lvl in range(num_lvls): |
|
c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl], |
|
anchor_strides[lvl], |
|
featmap_sizes[lvl]) |
|
s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl], |
|
anchor_strides[lvl]) |
|
|
|
|
|
offset_x = s_offset_x + c_offset_x[:, None] |
|
offset_y = s_offset_y + c_offset_y[:, None] |
|
|
|
|
|
offset = torch.stack([offset_y, offset_x], dim=-1) |
|
offset = offset.reshape(offset.size(0), -1) |
|
mlvl_offset.append(offset) |
|
offset_list.append(torch.cat(mlvl_offset)) |
|
offset_list = images_to_levels(offset_list, num_level_anchors) |
|
return offset_list |
|
|
|
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor, |
|
anchors: Tensor, labels: Tensor, |
|
label_weights: Tensor, bbox_targets: Tensor, |
|
bbox_weights: Tensor, avg_factor: int) -> tuple: |
|
"""Loss function on single scale.""" |
|
|
|
if self.with_cls: |
|
labels = labels.reshape(-1) |
|
label_weights = label_weights.reshape(-1) |
|
cls_score = cls_score.permute(0, 2, 3, |
|
1).reshape(-1, self.cls_out_channels) |
|
loss_cls = self.loss_cls( |
|
cls_score, labels, label_weights, avg_factor=avg_factor) |
|
|
|
bbox_targets = bbox_targets.reshape(-1, 4) |
|
bbox_weights = bbox_weights.reshape(-1, 4) |
|
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4) |
|
if self.reg_decoded_bbox: |
|
|
|
|
|
|
|
anchors = anchors.reshape(-1, 4) |
|
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred) |
|
loss_reg = self.loss_bbox( |
|
bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor) |
|
if self.with_cls: |
|
return loss_cls, loss_reg |
|
return None, loss_reg |
|
|
|
def loss_by_feat( |
|
self, |
|
anchor_list: List[List[Tensor]], |
|
valid_flag_list: List[List[Tensor]], |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
batch_gt_instances: InstanceList, |
|
batch_img_metas: List[dict], |
|
batch_gt_instances_ignore: OptInstanceList = None |
|
) -> Dict[str, Tensor]: |
|
"""Compute losses of the head. |
|
|
|
Args: |
|
anchor_list (list[list[Tensor]]): Multi level anchors of each |
|
image. |
|
valid_flag_list (list[list[Tensor]]): Multi level valid flags of |
|
each image. The outer list indicates images, and the inner list |
|
corresponds to feature levels of the image. Each element of |
|
the inner list is a tensor of shape (num_anchors, ) |
|
cls_scores (list[Tensor]): Box scores for each scale level |
|
Has shape (N, num_anchors * num_classes, H, W) |
|
bbox_preds (list[Tensor]): Box energies / deltas for each scale |
|
level with shape (N, num_anchors * 4, H, W) |
|
batch_gt_instances (list[:obj:`InstanceData`]): Batch of |
|
gt_instance. It usually includes ``bboxes`` and ``labels`` |
|
attributes. |
|
batch_img_metas (list[dict]): Meta information of each image, e.g., |
|
image size, scaling factor, etc. |
|
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional): |
|
Batch of gt_instances_ignore. It includes ``bboxes`` attribute |
|
data that is ignored during training and testing. |
|
Defaults to None. |
|
|
|
Returns: |
|
dict[str, Tensor]: A dictionary of loss components. |
|
""" |
|
featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds] |
|
cls_reg_targets = self.get_targets( |
|
anchor_list, |
|
valid_flag_list, |
|
featmap_sizes, |
|
batch_gt_instances, |
|
batch_img_metas, |
|
batch_gt_instances_ignore=batch_gt_instances_ignore, |
|
return_sampling_results=True) |
|
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list, |
|
avg_factor, sampling_results_list) = cls_reg_targets |
|
if not sampling_results_list[0].avg_factor_with_neg: |
|
|
|
|
|
avg_factor = sum([label.numel() for label in labels_list]) / 200.0 |
|
|
|
|
|
mlvl_anchor_list = list(zip(*anchor_list)) |
|
|
|
mlvl_anchor_list = [ |
|
torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list |
|
] |
|
|
|
losses = multi_apply( |
|
self.loss_by_feat_single, |
|
cls_scores, |
|
bbox_preds, |
|
mlvl_anchor_list, |
|
labels_list, |
|
label_weights_list, |
|
bbox_targets_list, |
|
bbox_weights_list, |
|
avg_factor=avg_factor) |
|
if self.with_cls: |
|
return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1]) |
|
return dict(loss_rpn_reg=losses[1]) |
|
|
|
def predict_by_feat(self, |
|
anchor_list: List[List[Tensor]], |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
batch_img_metas: List[dict], |
|
cfg: Optional[ConfigDict] = None, |
|
rescale: bool = False) -> InstanceList: |
|
"""Get proposal predict. Overriding to enable input ``anchor_list`` |
|
from outside. |
|
|
|
Args: |
|
anchor_list (list[list[Tensor]]): Multi level anchors of each |
|
image. |
|
cls_scores (list[Tensor]): Classification scores for all |
|
scale levels, each is a 4D-tensor, has shape |
|
(batch_size, num_priors * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box energies / deltas for all |
|
scale levels, each is a 4D-tensor, has shape |
|
(batch_size, num_priors * 4, H, W). |
|
batch_img_metas (list[dict], Optional): Image meta info. |
|
cfg (:obj:`ConfigDict`, optional): Test / postprocessing |
|
configuration, if None, test_cfg would be used. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[:obj:`InstanceData`]: Object detection results of each image |
|
after the post process. Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
assert len(cls_scores) == len(bbox_preds) |
|
|
|
result_list = [] |
|
for img_id in range(len(batch_img_metas)): |
|
cls_score_list = select_single_mlvl(cls_scores, img_id) |
|
bbox_pred_list = select_single_mlvl(bbox_preds, img_id) |
|
proposals = self._predict_by_feat_single( |
|
cls_scores=cls_score_list, |
|
bbox_preds=bbox_pred_list, |
|
mlvl_anchors=anchor_list[img_id], |
|
img_meta=batch_img_metas[img_id], |
|
cfg=cfg, |
|
rescale=rescale) |
|
result_list.append(proposals) |
|
return result_list |
|
|
|
def _predict_by_feat_single(self, |
|
cls_scores: List[Tensor], |
|
bbox_preds: List[Tensor], |
|
mlvl_anchors: List[Tensor], |
|
img_meta: dict, |
|
cfg: ConfigDict, |
|
rescale: bool = False) -> InstanceData: |
|
"""Transform outputs of a single image into bbox predictions. |
|
|
|
Args: |
|
cls_scores (list[Tensor]): Box scores from all scale |
|
levels of a single image, each item has shape |
|
(num_anchors * num_classes, H, W). |
|
bbox_preds (list[Tensor]): Box energies / deltas from |
|
all scale levels of a single image, each item has |
|
shape (num_anchors * 4, H, W). |
|
mlvl_anchors (list[Tensor]): Box reference from all scale |
|
levels of a single image, each item has shape |
|
(num_total_anchors, 4). |
|
img_shape (tuple[int]): Shape of the input image, |
|
(height, width, 3). |
|
scale_factor (ndarray): Scale factor of the image arange as |
|
(w_scale, h_scale, w_scale, h_scale). |
|
cfg (:obj:`ConfigDict`): Test / postprocessing configuration, |
|
if None, test_cfg would be used. |
|
rescale (bool): If True, return boxes in original image space. |
|
Defaults to False. |
|
|
|
Returns: |
|
:obj:`InstanceData`: Detection results of each image |
|
after the post process. |
|
Each item usually contains following keys. |
|
|
|
- scores (Tensor): Classification scores, has a shape |
|
(num_instance, ) |
|
- labels (Tensor): Labels of bboxes, has a shape |
|
(num_instances, ). |
|
- bboxes (Tensor): Has a shape (num_instances, 4), |
|
the last dimension 4 arrange as (x1, y1, x2, y2). |
|
""" |
|
cfg = self.test_cfg if cfg is None else cfg |
|
cfg = copy.deepcopy(cfg) |
|
|
|
|
|
level_ids = [] |
|
mlvl_scores = [] |
|
mlvl_bbox_preds = [] |
|
mlvl_valid_anchors = [] |
|
nms_pre = cfg.get('nms_pre', -1) |
|
for idx in range(len(cls_scores)): |
|
rpn_cls_score = cls_scores[idx] |
|
rpn_bbox_pred = bbox_preds[idx] |
|
assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:] |
|
rpn_cls_score = rpn_cls_score.permute(1, 2, 0) |
|
if self.use_sigmoid_cls: |
|
rpn_cls_score = rpn_cls_score.reshape(-1) |
|
scores = rpn_cls_score.sigmoid() |
|
else: |
|
rpn_cls_score = rpn_cls_score.reshape(-1, 2) |
|
|
|
|
|
|
|
|
|
scores = rpn_cls_score.softmax(dim=1)[:, 0] |
|
rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4) |
|
anchors = mlvl_anchors[idx] |
|
|
|
if 0 < nms_pre < scores.shape[0]: |
|
|
|
|
|
ranked_scores, rank_inds = scores.sort(descending=True) |
|
topk_inds = rank_inds[:nms_pre] |
|
scores = ranked_scores[:nms_pre] |
|
rpn_bbox_pred = rpn_bbox_pred[topk_inds, :] |
|
anchors = anchors[topk_inds, :] |
|
mlvl_scores.append(scores) |
|
mlvl_bbox_preds.append(rpn_bbox_pred) |
|
mlvl_valid_anchors.append(anchors) |
|
level_ids.append( |
|
scores.new_full((scores.size(0), ), idx, dtype=torch.long)) |
|
|
|
anchors = torch.cat(mlvl_valid_anchors) |
|
rpn_bbox_pred = torch.cat(mlvl_bbox_preds) |
|
bboxes = self.bbox_coder.decode( |
|
anchors, rpn_bbox_pred, max_shape=img_meta['img_shape']) |
|
|
|
proposals = InstanceData() |
|
proposals.bboxes = bboxes |
|
proposals.scores = torch.cat(mlvl_scores) |
|
proposals.level_ids = torch.cat(level_ids) |
|
|
|
return self._bbox_post_process( |
|
results=proposals, cfg=cfg, rescale=rescale, img_meta=img_meta) |
|
|
|
def refine_bboxes(self, anchor_list: List[List[Tensor]], |
|
bbox_preds: List[Tensor], |
|
img_metas: List[dict]) -> List[List[Tensor]]: |
|
"""Refine bboxes through stages.""" |
|
num_levels = len(bbox_preds) |
|
new_anchor_list = [] |
|
for img_id in range(len(img_metas)): |
|
mlvl_anchors = [] |
|
for i in range(num_levels): |
|
bbox_pred = bbox_preds[i][img_id].detach() |
|
bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4) |
|
img_shape = img_metas[img_id]['img_shape'] |
|
bboxes = self.bbox_coder.decode(anchor_list[img_id][i], |
|
bbox_pred, img_shape) |
|
mlvl_anchors.append(bboxes) |
|
new_anchor_list.append(mlvl_anchors) |
|
return new_anchor_list |
|
|
|
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, _, batch_img_metas = outputs |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in x] |
|
device = x[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
if self.adapt_cfg['type'] == 'offset': |
|
offset_list = self.anchor_offset(anchor_list, self.anchor_strides, |
|
featmap_sizes) |
|
else: |
|
offset_list = None |
|
|
|
x, cls_score, bbox_pred = self(x, offset_list) |
|
rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, bbox_pred, |
|
batch_gt_instances, batch_img_metas) |
|
losses = self.loss_by_feat(*rpn_loss_inputs) |
|
|
|
return losses |
|
|
|
def loss_and_predict( |
|
self, |
|
x: Tuple[Tensor], |
|
batch_data_samples: SampleList, |
|
proposal_cfg: Optional[ConfigDict] = None, |
|
) -> Tuple[dict, InstanceList]: |
|
"""Perform forward propagation of the head, then calculate loss and |
|
predictions from the features and data samples. |
|
|
|
Args: |
|
x (tuple[Tensor]): Features from FPN. |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
proposal_cfg (:obj`ConfigDict`, optional): Test / postprocessing |
|
configuration, if None, test_cfg would be used. |
|
Defaults to None. |
|
|
|
Returns: |
|
tuple: the return value is a tuple contains: |
|
|
|
- losses: (dict[str, Tensor]): A dictionary of loss components. |
|
- predictions (list[:obj:`InstanceData`]): Detection |
|
results of each image after the post process. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, _, batch_img_metas = outputs |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in x] |
|
device = x[0].device |
|
anchor_list, valid_flag_list = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
if self.adapt_cfg['type'] == 'offset': |
|
offset_list = self.anchor_offset(anchor_list, self.anchor_strides, |
|
featmap_sizes) |
|
else: |
|
offset_list = None |
|
|
|
x, cls_score, bbox_pred = self(x, offset_list) |
|
rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, bbox_pred, |
|
batch_gt_instances, batch_img_metas) |
|
losses = self.loss_by_feat(*rpn_loss_inputs) |
|
|
|
predictions = self.predict_by_feat( |
|
anchor_list, |
|
cls_score, |
|
bbox_pred, |
|
batch_img_metas=batch_img_metas, |
|
cfg=proposal_cfg) |
|
return losses, predictions |
|
|
|
def predict(self, |
|
x: Tuple[Tensor], |
|
batch_data_samples: SampleList, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the detection head and predict |
|
detection results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Multi-level features from the |
|
upstream network, each is a 4D-tensor. |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
rescale (bool, optional): Whether to rescale the results. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
batch_img_metas = [ |
|
data_samples.metainfo for data_samples in batch_data_samples |
|
] |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in x] |
|
device = x[0].device |
|
anchor_list, _ = self.get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
if self.adapt_cfg['type'] == 'offset': |
|
offset_list = self.anchor_offset(anchor_list, self.anchor_strides, |
|
featmap_sizes) |
|
else: |
|
offset_list = None |
|
|
|
x, cls_score, bbox_pred = self(x, offset_list) |
|
predictions = self.stages[-1].predict_by_feat( |
|
anchor_list, |
|
cls_score, |
|
bbox_pred, |
|
batch_img_metas=batch_img_metas, |
|
rescale=rescale) |
|
return predictions |
|
|
|
|
|
@MODELS.register_module() |
|
class CascadeRPNHead(BaseDenseHead): |
|
"""The CascadeRPNHead will predict more accurate region proposals, which is |
|
required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN |
|
consists of a sequence of RPNStage to progressively improve the accuracy of |
|
the detected proposals. |
|
|
|
More details can be found in ``https://arxiv.org/abs/1909.06720``. |
|
|
|
Args: |
|
num_stages (int): number of CascadeRPN stages. |
|
stages (list[:obj:`ConfigDict` or dict]): list of configs to build |
|
the stages. |
|
train_cfg (list[:obj:`ConfigDict` or dict]): list of configs at |
|
training time each stage. |
|
test_cfg (:obj:`ConfigDict` or dict): config at testing time. |
|
init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \ |
|
list[dict]): Initialization config dict. |
|
""" |
|
|
|
def __init__(self, |
|
num_classes: int, |
|
num_stages: int, |
|
stages: List[ConfigType], |
|
train_cfg: List[ConfigType], |
|
test_cfg: ConfigType, |
|
init_cfg: OptMultiConfig = None) -> None: |
|
super().__init__(init_cfg=init_cfg) |
|
assert num_classes == 1, 'Only support num_classes == 1' |
|
assert num_stages == len(stages) |
|
self.num_stages = num_stages |
|
|
|
|
|
self.stages = ModuleList() |
|
for i in range(len(stages)): |
|
train_cfg_i = train_cfg[i] if train_cfg is not None else None |
|
stages[i].update(train_cfg=train_cfg_i) |
|
stages[i].update(test_cfg=test_cfg) |
|
self.stages.append(MODELS.build(stages[i])) |
|
self.train_cfg = train_cfg |
|
self.test_cfg = test_cfg |
|
|
|
def loss_by_feat(self): |
|
"""loss_by_feat() is implemented in StageCascadeRPNHead.""" |
|
pass |
|
|
|
def predict_by_feat(self): |
|
"""predict_by_feat() is implemented in StageCascadeRPNHead.""" |
|
pass |
|
|
|
def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict: |
|
"""Perform forward propagation and loss calculation of the detection |
|
head on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Features from the upstream network, each is |
|
a 4D-tensor. |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
|
|
Returns: |
|
dict: A dictionary of loss components. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, _, batch_img_metas = outputs |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in x] |
|
device = x[0].device |
|
anchor_list, valid_flag_list = self.stages[0].get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
losses = dict() |
|
|
|
for i in range(self.num_stages): |
|
stage = self.stages[i] |
|
|
|
if stage.adapt_cfg['type'] == 'offset': |
|
offset_list = stage.anchor_offset(anchor_list, |
|
stage.anchor_strides, |
|
featmap_sizes) |
|
else: |
|
offset_list = None |
|
x, cls_score, bbox_pred = stage(x, offset_list) |
|
rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, |
|
bbox_pred, batch_gt_instances, batch_img_metas) |
|
stage_loss = stage.loss_by_feat(*rpn_loss_inputs) |
|
for name, value in stage_loss.items(): |
|
losses['s{}.{}'.format(i, name)] = value |
|
|
|
|
|
if i < self.num_stages - 1: |
|
anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, |
|
batch_img_metas) |
|
|
|
return losses |
|
|
|
def loss_and_predict( |
|
self, |
|
x: Tuple[Tensor], |
|
batch_data_samples: SampleList, |
|
proposal_cfg: Optional[ConfigDict] = None, |
|
) -> Tuple[dict, InstanceList]: |
|
"""Perform forward propagation of the head, then calculate loss and |
|
predictions from the features and data samples. |
|
|
|
Args: |
|
x (tuple[Tensor]): Features from FPN. |
|
batch_data_samples (list[:obj:`DetDataSample`]): Each item contains |
|
the meta information of each image and corresponding |
|
annotations. |
|
proposal_cfg (ConfigDict, optional): Test / postprocessing |
|
configuration, if None, test_cfg would be used. |
|
Defaults to None. |
|
|
|
Returns: |
|
tuple: the return value is a tuple contains: |
|
|
|
- losses: (dict[str, Tensor]): A dictionary of loss components. |
|
- predictions (list[:obj:`InstanceData`]): Detection |
|
results of each image after the post process. |
|
""" |
|
outputs = unpack_gt_instances(batch_data_samples) |
|
batch_gt_instances, _, batch_img_metas = outputs |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in x] |
|
device = x[0].device |
|
anchor_list, valid_flag_list = self.stages[0].get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
losses = dict() |
|
|
|
for i in range(self.num_stages): |
|
stage = self.stages[i] |
|
|
|
if stage.adapt_cfg['type'] == 'offset': |
|
offset_list = stage.anchor_offset(anchor_list, |
|
stage.anchor_strides, |
|
featmap_sizes) |
|
else: |
|
offset_list = None |
|
x, cls_score, bbox_pred = stage(x, offset_list) |
|
rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, |
|
bbox_pred, batch_gt_instances, batch_img_metas) |
|
stage_loss = stage.loss_by_feat(*rpn_loss_inputs) |
|
for name, value in stage_loss.items(): |
|
losses['s{}.{}'.format(i, name)] = value |
|
|
|
|
|
if i < self.num_stages - 1: |
|
anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, |
|
batch_img_metas) |
|
|
|
predictions = self.stages[-1].predict_by_feat( |
|
anchor_list, |
|
cls_score, |
|
bbox_pred, |
|
batch_img_metas=batch_img_metas, |
|
cfg=proposal_cfg) |
|
return losses, predictions |
|
|
|
def predict(self, |
|
x: Tuple[Tensor], |
|
batch_data_samples: SampleList, |
|
rescale: bool = False) -> InstanceList: |
|
"""Perform forward propagation of the detection head and predict |
|
detection results on the features of the upstream network. |
|
|
|
Args: |
|
x (tuple[Tensor]): Multi-level features from the |
|
upstream network, each is a 4D-tensor. |
|
batch_data_samples (List[:obj:`DetDataSample`]): The Data |
|
Samples. It usually includes information such as |
|
`gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. |
|
rescale (bool, optional): Whether to rescale the results. |
|
Defaults to False. |
|
|
|
Returns: |
|
list[obj:`InstanceData`]: Detection results of each image |
|
after the post process. |
|
""" |
|
batch_img_metas = [ |
|
data_samples.metainfo for data_samples in batch_data_samples |
|
] |
|
|
|
featmap_sizes = [featmap.size()[-2:] for featmap in x] |
|
device = x[0].device |
|
anchor_list, _ = self.stages[0].get_anchors( |
|
featmap_sizes, batch_img_metas, device=device) |
|
|
|
for i in range(self.num_stages): |
|
stage = self.stages[i] |
|
if stage.adapt_cfg['type'] == 'offset': |
|
offset_list = stage.anchor_offset(anchor_list, |
|
stage.anchor_strides, |
|
featmap_sizes) |
|
else: |
|
offset_list = None |
|
x, cls_score, bbox_pred = stage(x, offset_list) |
|
if i < self.num_stages - 1: |
|
anchor_list = stage.refine_bboxes(anchor_list, bbox_pred, |
|
batch_img_metas) |
|
|
|
predictions = self.stages[-1].predict_by_feat( |
|
anchor_list, |
|
cls_score, |
|
bbox_pred, |
|
batch_img_metas=batch_img_metas, |
|
rescale=rescale) |
|
return predictions |
|
|